idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.04.2006 09:49

Quantitative Fluoreszenzmikroskopie per Knopfdruck

Dr. Tobias Niemann Bernstein Koordinationsstelle, Außenstelle des Forschungszentrums Jülich
Bernstein Centers for Computational Neuroscience

    Wissenschaftler aus Göttingen entwickeln neue Methoden zur quantitativen Analyse molekularer Prozesse.

    Moleküle sind die Grundbausteine jeden Lebens. Um zu verstehen, wie die Prozesse des Lebens funktionieren - wie zum Beispiel Nervenzellen Informationen kodieren und weiterleiten - ist die Analyse der molekularen Grundlagen solcher Vorgänge unerlässlich. Seit etwa zwei Jahrzehnten nutzen Wissenschaftler so genannte "Imaging Technologien", um mit Hilfe von Fluoreszenzfarbstoffen im lebenden Gewebe molekulare Prozesse sichtbar zu machen und zu beobachten. Mit Farbstoffen, die Kalzium binden, lässt sich zum Beispiel beobachten, dass die Konzentration von Kalziumionen in einer Nervenzelle ansteigt, wenn sie einen Impuls sendet. Am besten werden solche Experimente heute in Gewebsschnitten durchgeführt. Hier waren aber bisher genaue quantitative Aussagen nicht möglich. Mit Hilfe computergestützter Methoden ist es Prof. Dr. Dr. Detlev Schild und seinem Mitarbeiter Tsai-Wen Chen nun gelungen, molekulare Prozesse im lebenden Gewebe genau zu quantifizieren. Die Arbeit wird in der Aprilausgabe der renommierten Zeitschrift "Biophysical Journal" publiziert. Professor Schild ist Direktor der Abteilung Neurophysiologie und zelluläre Biophysik am Bereich Humanmedizin der Universität Göttingen, Bereich Humanmedizin. Er forscht am DFG - Forschungszentrum "Molekularphysiologie des Gehirns (CMPB)" sowie am Bernstein Center for Computational Neuroscience. Tsai-Wen Chen ist PhD - Student des Göttinger internationalen Studiengangs Neuroscience und promoviert in Schilds Arbeitsgruppe.

    Ein großes Problem bei der Ermittlung quantitativer Daten aus Fluoreszenzfärbungen bereitet die so genannte Hintergrundfärbung. Fluoreszenzfarbstoff, der unspezifisch am Gewebe bindet, oder Reflexionen in der Optik können dazu beitragen, dass auch dort ein Fluoreszenzsignal gemessen wird, wo die zu untersuchenden Moleküle gar nicht vorhanden sind. Zusätzlich wird die quantitative Bestimmung des Signals durch "Rauschen" gestört. Ursache für das "Rauschen" sind Unregelmäßigkeiten im Fluoreszenzsignal und im Verstärker. Gemeinhin versuchen Wissenschaftler das Hintergrundsignal abzuschätzen, indem sie die Fluoreszenz in einem Bereich des Gewebes messen, der aufgrund theoretischer Überlegungen kein spezifisches Signal haben dürfte. Diese Methode ist aber nicht nur mühsam, sie ist auch recht ungenau.

    Prof. Schild und sein Mitarbeiter Chen suchten daher einen anderen Weg zur Hintergrundbestimmung, der nicht von Messungen in benachbarten Regionen abhängig ist. Sie nutzten diese Methode, um die Veränderung der Kalziumionenkonzentration in Nervenzellen genau zu bestimmen. Die Kalziumionenkonzentration, und damit das spezifische Signal, verändern sich mit der Aktivität der Zelle, das Hintergrundsignal hingegen nicht. "Diese Zeitinformation in den Fluoreszenzen haben wir genutzt, um dadurch den Hintergrund herauszurechnen", erläutert Schild.

    Gemessen wird die Fluoreszenz an verschiedenen Punkten in einer "region of interest" (ROI), dem Bereich einer Zelle oder eines Gewebes, dessen Kalziumhaushalt der Forscher ermitteln möchte. Die genauen Werte sind an den verschiedenen Messpunkten in der ROI in der Regel unterschiedlich, weil das Mikroskop ein zweidimensionales Bild einer dreidimensionalen Struktur liefert. Diese Unterschiede werden von der neuen Methode ausgenutzt.

    "Im Gegensatz zu den absoluten Werten ist aber die Dynamik, mit der sich das spezifische Signal an unterschiedlichen Messpunkten verändert, gleich. Die ROI muss aufgrund theoretischer Überlegungen so gewählt sein, dass diese Voraussetzung gegeben ist", erklärt Schilds Mitarbeiter Chen. So ließe sich dann anhand der zeitlichen Veränderung der Fluoreszenz an verschiedenen Messpunkten sowohl das Hintergrundsignal als auch das Rauschen herausrechnen.

    "Die Methode wird eine breite Anwendung finden", ist Prof. Schild uberzeugt. "Um eine genaue Vorstellung davon zu gewinnen, wie eine Zelle Signale interpretiert oder mit welchen Mechanismen Zellen miteinander kommunizieren, ist die Quantifizierung molekularer Daten unerlässlich. Mit der Methode, die Chen und Schild entwickelt haben, lassen sich quantitative Daten nicht nur sehr genau, sondern auch sehr schnell bestimmen. Mikroskophersteller können unsere Methode nun so in ihre Software einbauen, dass der Hintergrund automatisch per Knopfdruck abgezogen wird", so Schild.

    Quelle:
    Tsai-Wen Chen, Bei-Jung Lin, Edgar Brunner und Detlev Schild (2006). In-situ background estimation in quantitative fluorescence imaging. Biophysics Journal 90(7):2534-47

    Weitere Informationen:
    Prof. Dr. Dr. Detlev Schild
    Abt. Neurophysiologie und zelluläre Biophysik, Zentrum Physiologie und Pathophysiologie
    Humboldtallee 23, 37073 Göttingen
    Tel. +49 (0)551 / 39-5915 /-8331, Fax +49 (0)551 / 39-8399
    dschild@gwdg.de

    Gemeinsame Presseinformation vom Bernstein Center for Computational Neuroscience (BCCN) Göttingen und dem Bereich Humanmedizin der Universität Göttingen.

    Das BCCN Göttingen ist ein Verbundprojekt der Georg-August-Universität Göttingen, des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, dem Deutschen Primaten Zentrum und der Otto Bock HealthCare GmbH.

    Die Bernstein Centers for Computational Neuroscience (BCCN) sind vier vom BMBF geförderte Zentren in Berlin, Freiburg, Göttingen und München. In dem interdisziplinären Netzwerk werden Experiment, Datenanalyse und Computersimulation auf der Grundlage wohl definierter theoretischer Konzepte vereint. Zentrales Anliegen der Computational Neuroscience ist die Aufklärung der neuronalen Grundlagen von Hirnleistungen, die so z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik führen.


    Weitere Informationen:

    http://www.bccn-goettingen.de/
    http://www.bernstein-zentren.de/
    http://ukmn.gwdg.de/


    Bilder

    Merkmale dieser Pressemitteilung:
    Biologie, Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).