idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
02.11.2006 10:33

Hoch aufgelöster Blick in die Zelle - Bilder zeigen molekulare Details der Proteinsortierung

Luise Dirscherl Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    München, 02. November 2006 -- Membranproteine und sekretorische Proteine müssen zielgerichtet in oder durch Membranen geschleust werden, um an ihren Bestimmungsort zu gelangen. Dieser hochkomplexe Vorgang ist in Bakterien und auch den Zellen höherer Lebewesen essentiell. An der Proteinsortierung sind Moleküle und Molekülkomplexe beteiligt, wobei zu einem späten Zeitpunkt die Hauptakteure den so genannten "docking complex" bilden, dessen Aufbau ein Team um Professor Roland Beckmann vom Genzentrum der Ludwig-Maximilians-Universität (LMU) München vor kurzem aufklären konnte. In der online-Ausgabe der Fachzeitschrift "Nature" präsentiert Beckmanns Team nun in Zusammenarbeit mit Wissenschaftlern des Max-Planck-Instituts für molekulare Genetik in Berlin, der University of Manchester, UK, und der Universität Heidelberg eine Sequenz hoch aufgelöster 3D-Strukturen. Diese zeigen in Bakterien und höheren Zellen einige Interaktionen der beteiligten Proteine zu Beginn der Proteinsortierung. "Diese Bilder zeigen bislang unbekannte Einzelheiten auf molekularer Ebene und liefern damit die strukturelle Basis für ein detailliertes Verständnis dieser Vorgänge", so Beckmann.

    Proteine sind die wichtigsten Funktionsträger der Zelle. Ihr Aufbau ist in den Genen, also bestimmten Abschnitten des Erbmoleküls DNA, festgelegt. Ihre Aufgaben können sie oft aber erst erfüllen, wenn sie in zelluläre Membranen eingebracht oder durch Membranen transportiert wurden. Proteine, die sortiert werden müssen, tragen eine bestimmte Signalsequenz, die auch dann schon vorhanden ist, wenn das Protein noch nicht fertig synthetisiert ist. Die Signalsequenz kann damit schon abgelesen werden, wenn das betreffende Protein noch mit einem Ribosom, also einer der zellulären Produktionsstätten für Proteine, verbunden ist. Zu diesem Zeitpunkt wird die Signalsequenz dann von einem Molekülkomplex, dem SRP oder "Signal Recognition Particle" erkannt, der sich anheftet und die weitere Proteinsynthese verhindert. Ribosom und Protein bleiben aber verbunden und werden von dem SRP gemeinsam zu einer zellulären Membran transportiert. Bei Bakterien ist dies die äußere Plasmamembran, bei höheren Lebewesen ist es die Membran des Endoplasmatischen Retikulums, kurz ER. Diese Struktur ist für die weitere Verteilung und auch den Transport der Proteine aus der Zelle heraus zuständig.

    Die Strukturen in der vorliegenden Studie zeigen zunächst die Signalsequenz am Ribosom, bevor also das Protein fertig synthetisiert ist. "Die Sequenz taucht aus einer Öffnung im Ribosom auf und ist damit exponiert für die Interaktion mit und Bindung an SRP", berichtet Beckmann. "Sobald das Ribosom an eine bestimmte Domäne des SRP gebunden hat, verändert diese ihre Form. Damit ist der Molekülkomplex vorbereitet für eine später folgende Interaktion, wenn er an seinen membrangebundenen Rezeptor SR andocken wird." Dort erst wird das Protein fertig synthetisiert und letztlich durch oder in die Membran geschleust werden. Die Bilder lassen unter anderem vermuten, dass die Signalsequenz am Ribosom flexibel genug ist, um auch mit anderen Bindungspartnern zu interagieren. Es ist bekannt, dass SRP an Signalsequenzen von unterschiedlicher Länge andocken kann. Die Forscher fanden Hinweise in den Strukturen, dass es nahe der ribosomalen Öffnung eine Stelle gibt, an der die Signalsequenzen "parken", um auf SRP zu warten. Weitere 3D-Rekonstruktionen zeigen dann SRP beim Ribosom in Bakterien, andere die entsprechende Interaktion in Säugerzellen. Im Vergleich wird die hohe Übereinstimmung der beiden Komplexe deutlich. "Es ist ganz offensichtlich, dass die beiden Systeme insgesamt extrem ähnlich sind", so Beckmann. "Wenn wir die Abbildungen der Komplexe aus Ribosom, Signalsequenz und SRP aus Bakterien und aus Säugerzellen übereinander legen, sieht man erst den hohen Grad an struktureller und funktionaler Übereinstimmung, also die Konservierung des Komplexes im Lauf der Evolution."

    Publikation:
    "Following the signal sequence from ribosomal tunnel exit to signal recognition particle", Mario Halic, Michael Blau, Thomas Becker, Thorsten Mielke, Martin R. Pool, Klemens Wild, Irmgard Sinning, Roland Beckmann, Nature, online am 30. Oktober 2006

    Ansprechpartner:
    Prof. Dr. Roland Beckmann
    Genzentrum der LMU
    Tel.: 089-2180-76900
    Fax: 089-2180-76999
    E-Mail: beckmann@lmb.uni-muenchen.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Biologie, Chemie, Ernährung / Gesundheit / Pflege, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).