idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.09.2009 14:24

Ein atomarer Schalter

Dr. Bernold Feuerstein Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik

    Erstmals haben Forscher des Heidelberger Max-Planck-Instituts für Kernphysik am Freie-Elektronen-Laser FLASH (Forschungszentrum DESY) in Hamburg eine Art Schalter für einen korrelierten atomaren Prozess realisiert. Die Wahrscheinlichkeit, mit der Doppelionisation von Lithiumatomen bei Bestrahlung mit UV-Licht auftritt, konnte durch gezielte Manipulation eines der beteiligten atomaren Elektronenorbitale kontrolliert werden. Dabei wurde lediglich die räumliche Ausrichtung des Orbitals verändert.

    Wie komplexe Systeme aus dem Zusammenspiel einfacher Bestandteile entstehen, gehört zu den fundamentalen Fragestellungen der Physik. Eine wesentliche Rolle spielt dabei die gegenseitige Beeinflussung der Teilchen, Korrelation genannt, die letztendlich dazu führt, dass das Ganze mehr ist als die einfache Summe seiner Teile. Schon das Dreikörperproblem zeigt die dabei auftretenden mathematischen Schwierigkeiten auf. Ein Ziel der modernen Atomphysik ist es, Mehrteilchenprozesse nicht nur besser zu verstehen, sondern auch kontrolliert zu manipulieren. Dies ist Forschern der Gruppe um Alexander Dorn am Heidelberger Max-Planck-Institut für Kernphysik am Beispiel der Doppelionisation von Lithium durch Ultraviolett-Photonen gelungen, indem sie die räumliche Struktur des Atoms gezielt präparierten.

    Ermöglicht wurden die Messungen durch eine bisher einmalige Kombination von drei hochmodernen Techniken: Die Photonen einer Energie von 85 eV, welche die Reaktion auslösen, lieferte der neue Freie-Elektronen-Laser in Hamburg (FLASH, Forschungszentrum DESY). Diese treffen auf ultrakalte Lithiumatome, die in einer magneto-optischen Falle auf sehr tiefe Temperaturen (0,1 Grad über dem absoluten Nullpunkt) gekühlt, durch Laser-Lichtkräfte gefangen gehalten werden. Dort lassen sie sich durch weitere Laser speziell präparieren. Schließlich befindet sich diese Falle in einem sogenannten Reaktionsmikroskop, welches den simultanen und sehr effizienten Nachweis im Prinzip aller Reaktionsprodukte, der Elektronen und des Ions mit hoher Auflösung erlaubt.

    Abbildung 1 zeigt als Beispiel die beobachtete Geschwindigkeitsverteilung des Elektrons nach Einfachionisation von Lithium durch UV-Photonen: Die verschiedenen ringförmigen Muster korrespondieren zur Ionisation aus der äußersten 2s-Schale (a), aus der 1s-Schale (b) sowie aus der 1s-Schale bei gleichzeitiger Anregung eines der verbliebenen Elektronen auf die 2p-Schale (c). Grundlage ist der von Einstein 1905 erstmals richtig gedeutete Photoeffekt, wo die gesamte Energie eines einzelnen Lichtquants (Photons) zunächst auf genau ein Elektron übertragen wird. Dieses kann aber einen Teil seiner Energie durch die gegenseitige elektrische Abstoßung (angedeutet durch die gestrichelte schräge Linie) auf ein weiteres Elektron übertragen und dieses wie im Fall (c) in einen gebundenen Zustand anregen - ein korrelierter Prozess. Auf genau die gleiche Weise kann dieses Elektron aber auch soviel Energie erhalten, dass es ebenfalls das Atom verlässt, also Doppelionisation auftritt.

    Alexander Dorn und seine Kollegen haben nun das 2s-Elektron mit einem optischen Laser in ein 2p-Orbital angeregt, wobei dessen räumliche Ausrichtung gezielt präpariert werden kann (rote Keulen in Abbildung 2a). Im zweiten Schritt wurde dann durch Bestrahlung mit polarisierten UV-Laserpulsen ein Elektron aus der 1s-Schale freigesetzt. Wie schon aus der Messung für Einfachionisation (Abbildung 1) ersichtlich, wird das Elektron bevorzugt in Richtung des elektrischen Laserfeldes (E) emittiert (blaue Keulen in Abbildung 2a). Die Forscher haben nun die Wahl, das präparierte 2p-Orbital parallel oder senkrecht zum Laserfeld auszurichten, was die Wahrscheinlichkeit für Doppelionisation stark beeinflusst - bei paralleler Ausrichtung ist sie erhöht, im anderen Fall deutlich unterdrückt.

    Dieser Effekt tritt ausschließlich bei sehr niedrigen Energien der emittierten Elektronen, das heißt nahe der energetischen Schwelle zur Doppelionisation auf; bei höheren Energien verschwindet er. Direkt an der Schwelle sind die beiden Elektronen vollständig korreliert, sie müssen ihre Energie und Winkel exakt abstimmen, um beide aus dem Potentialtopf des Ions zu entrinnen: am liebsten entkommen sie in exakt gegenüberliegenden Richtungen - was bei paralleler Ausrichtung bevorzugt funktioniert.

    Dieses Pilotexperiment demonstriert, dass die korrelierte Zustandsänderung von mehreren Elektronen in gebundenen Systemen, hier bei der Doppelionisation von Atomen, mittels Laserpräparation vollständig kontrolliert und, bei geeignet gewählten Bedingungen, praktisch an- und abgeschaltet werden kann. Durch diese neuentwickelte Methode können nicht nur weitreichende Erkenntnisse über quantendynamische Elektronenkorrelation in atomaren Systemen gewonnen werden, sondern die Forscher erhoffen sich Rückschlüsse auf solche korrelierten Effekte in anderen Quantensystemen.

    Kontakt:

    PD Dr. Alexander Dorn
    Max-Planck-Institut für Kernphysik
    Saupfercheckweg 1
    69117 Heidelberg
    Tel: (+49)6221/516-513
    Fax: (+49)6221/516-604
    E-Mail: alexander.dorn@mpi-hd.mpg.de

    Prof. Dr. Joachim Ullrich
    Max-Planck-Institut für Kernphysik
    Saupfercheckweg 1
    69117 Heidelberg
    Tel: (+49)6221/516-696
    Fax: (+49)6221/516-604
    E-Mail: joachim.ullrich@mpi-hd.mpg.de


    Weitere Informationen:

    http://link.aps.org/doi/10.1103/PhysRevLett.103.103008 - Originalveröffentlichung
    http://www.mpi-hd.mpg.de/ullrich/ - Webseite der Abteilung Ullrich (MPIK)
    http://www.cfel.mpg.de/page.php?id=38 - Webseite der Max Planck Advanced Study Group (ASG) am Center for Free Electron Laser Science (CFEL) Hamburg


    Bilder

    Beobachtete Impulsverteilung des emittierten Photoelektrons nach Einfachionisation von Lithiumatomen: Ionisation aus der 2s-Schale (a), 1s-Schale (b) und 1s-Schale bei gleichzeitiger Anregung eines weiteren Elektrons (c).
    Beobachtete Impulsverteilung des emittierten Photoelektrons nach Einfachionisation von Lithiumatomen ...
    MPI für Kernphysik
    None

    Anschauliche Darstellung der Doppelionisation von präparierten Lithiumatomen (a) durch vertikal polarisiertes UV-Licht (b). Die Wahrscheinlichkeit für die Emission des zweiten Elektrons auf der 2p-Schale hängt davon ab, ob sein Orbital (rote Keulen) parallel oder senkrecht zur Lichtpolarisation ausgerichtet ist.
    Anschauliche Darstellung der Doppelionisation von präparierten Lithiumatomen (a) durch vertikal pola ...
    MPI für Kernphysik
    None


    Merkmale dieser Pressemitteilung:
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Beobachtete Impulsverteilung des emittierten Photoelektrons nach Einfachionisation von Lithiumatomen: Ionisation aus der 2s-Schale (a), 1s-Schale (b) und 1s-Schale bei gleichzeitiger Anregung eines weiteren Elektrons (c).


    Zum Download

    x

    Anschauliche Darstellung der Doppelionisation von präparierten Lithiumatomen (a) durch vertikal polarisiertes UV-Licht (b). Die Wahrscheinlichkeit für die Emission des zweiten Elektrons auf der 2p-Schale hängt davon ab, ob sein Orbital (rote Keulen) parallel oder senkrecht zur Lichtpolarisation ausgerichtet ist.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).