idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.05.2010 12:37

Blitzkuriere in der Zelle - Warum Motorproteine eine Bremse haben

Dr. Ulrich Marsch Zentrale Presse & Kommunikation
Technische Universität München

    Jede einzelne unserer Zellen enthält so genannte Motorproteine, die wichtige Substanzen von einem Ort zum anderen transportieren. Doch darüber wie diese Transportvorgänge genau ablaufen ist bisher nur wenig bekannt. Biophysiker der Technischen Universität München (TUM) und der Ludwig Maximilians Universität München (LMU) konnten nun grundlegende Funktionen eines besonders interessanten Motorproteins aufklären. In der aktuellen Ausgabe der Proceedings of the National Academy of Sciences (USA) berichten sie über ihre Ergebnisse.

    Motorisierte Transportproteine sind einer der Schlüssel zur Entwicklung höherer Lebewesen. Erst durch sie ist es der Zelle möglich, wichtige Substanzen gezielt und schnell an einen bestimmten Ort in der Zelle zu liefern. Bakterien besitzen keine solchen Transportproteine, sie sind daher nicht in der Lage größere Zellen oder sogar große Organismen mit vielen Zellen zu bilden. Ganz besonders wichtig sind Transportproteine in den primären Zilien, den Antennen der Zellen, mit denen sie Informationen aus der Umgebung in die Zelle leiten.

    Wie kleine Lastwagen auf einer Autobahn transportieren Kinesine zelluläre Materialien entlang von Proteinfasern, so genannten Mikrotubuli, die die gesamte Zelle durchziehen. Die Kinesine bestehen aus zwei langen, miteinander verdrillten Eiweißketten. Am einen Ende trägt jedes Protein einen Kopf, der an bestimmte Strukturen auf der Oberfläche der Mikrotubuli andocken kann, am anderen Ende wird die Fracht angehängt.

    In den Zilien des Fadenwurms Caenorhabditis elegans sind ganz besondere Kinesine am Werk: Sie bestehen aus zwei unterschiedlichen Eiweißketten und eignen sich daher für die Untersuchung der Transportmechanismen besonders gut. Als Fracht hängten die Forscher kleine Kunststoffperlen an die Enden dieser Motorproteine. Mit einer “optischen Pinzette”, einem speziell profilierten Laserstrahl, können sie diese Perlen manipulieren.

    Ein Ende des Proteinmoleküls wurde mit der optischen Pinzette fixiert, das andere konnte auf Mikrotubuli laufen. Auf diese Weise maßen die Wissenschaftler die Kraft, mit der das Motorprotein ziehen kann. In winzigen, acht Nanometer großen Schritten läuft das Kinesin-2 in dieser Versuchsanordnung mit seiner Fracht bis zu 1500 Nanometer weit. „Wenn wir es nicht festhalten würden, käme es vermutlich noch sehr viel weiter,“ sagt Zeynep Ökten, vom Institut für Zellbiologie der LMU.

    Das untersuchte Kinesin-2 besteht aus einem KLP11- und einem KLP20-Protein. Indem sie die Köpfe der Ketten austauschten, konnten die Forscher zeigen, dass es sich bei KLP11, um ein nicht laufendes Motorprotein handelt. Erst in der Kombination mit dem KLP20 wird daraus ein Transportprotein. Bei weiteren Versuchen konnten sie klären, warum die Natur diese ungewöhnliche Kombination wählt: KLP20-Proteine haben keine „Bremse“. Ein Transportprotein aus zwei KLP20-Einheiten würde permanent laufen und Energie verbrauchen. Das KLP11 bringt dagegen einen Autoinhibierung genannten Mechanismus mit, der dafür sorgt, dass das Transportprotein still steht, wenn keine Fracht angebunden ist.

    „Unsere Ergebnisse zeigen, dass ein molekularer Motor, will er in einer Zelle erfolgreich arbeiten, über den einfachen Transport hinaus eine Vielzahl an Funktionen übernehmen muss,“ sagt Professor Matthias Rief aus dem Physik-Department der TU München. Der Motor muss an- und abschaltbar sein, er muss zielgerichtet eine Last aufnehmen und diese am Ziel abgeben können. „Es ist beeindruckend wie die Natur es schafft, all diese Funktionen in einem Molekül zu vereinen. Hier ist sie allen Anstrengungen der modernen Nanotechnologie noch weit überlegen und dient uns allen als großes Vorbild.“

    Die Arbeiten wurden gefördert aus Mitteln des Exzellenzclusters Center for Integrated Protein Science Munich, der European Microbiology Organization, der Deutschen Forschungsgemeinschaft (DFG) und der Friedrich-Baur-Stiftung.

    Original-Publikation:

    Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner,
    Melanie Brunnbauer, Felix Mueller-Planitz, Süleyman Kösem, Thi-Hieu Hoa, Renate Dombi, J. Christof M. Gebhardt, Matthias Rief, und Zeynep Ökten
    PNAS Early Edition, Week of May 17, 2010

    Kontakt:

    Prof. Matthias Rief
    Lehrstuhl für Experimentalphysik (E 22)
    Technische Universität München
    James-Franck-Str. 1
    85748 Garching, Germany
    Tel.: +49 89 289 12471
    Fax: +49 89 289 12523
    E-Mail: mrief@ph.tum.de

    Dr. Zeynep Ökten
    Lehrstuhl für Zellbiologie
    Ludwig Maximilians Universität München
    Schillerstr. 42
    80336 München, Germany
    Tel.: +49 89 2180 75874
    Fax: +49 89 2180 75883
    E-Mail: zoekten@ph.tum.de


    Weitere Informationen:

    http://www.pnas.org/cgi/doi/10.1073/pnas.1005177107 Originalpublikation


    Bilder

    "Optische Pinzette": Im Probenkopf (im Bild Mitte-rechts) können einzelne, an jeweils ein Molekül gebundene Polymerperlen mit einem Laserstrahl fixiert werden. Bewegt sich das Molekül, ist dies über die Optik (vorne rechts) und die beiden Photodioden (vorne Mitte) detektierbar.
    "Optische Pinzette": Im Probenkopf (im Bild Mitte-rechts) können einzelne, an jeweils ein Molekül ge ...
    Andreas Battenberg / TU München
    None


    Merkmale dieser Pressemitteilung:
    Biologie, Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    "Optische Pinzette": Im Probenkopf (im Bild Mitte-rechts) können einzelne, an jeweils ein Molekül gebundene Polymerperlen mit einem Laserstrahl fixiert werden. Bewegt sich das Molekül, ist dies über die Optik (vorne rechts) und die beiden Photodioden (vorne Mitte) detektierbar.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).