idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.06.2010 12:50

TU-Physiker löst ein Rätsel um neue Supraleiter

Mag. Werner Sommer Büro für Öffentlichkeitsarbeit
Technische Universität Wien

    TU-Forscher Philipp Hansmann vom Institut für Festkörperphysik der Technischen Universität (TU) Wien hat das Rätsel rund um die magnetischen Momente in eisenhaltigen Supraleitern gelöst. Er hat herausgefunden, warum Rechnungen und Experiment bislang unterschiedliche magnetische Momente in diesen viel untersuchten Materialien aufwiesen.

    Wien (TU). – Seit ihrer Entdeckung im Jahr 2008 sind eisenbasierte Hochtemperatur-Supraleiter (Eisenpniktid-Verbindungen, siehe Abb. 1) die zurzeit wohl am intensivsten untersuchten Festkörper. ForscherInnen sprechen auch von der „Eisenzeit“, die auf die „Kupferzeit“ der Supraleiter mit Kupferverbindungen (Kuprate) folgt (siehe Abb. 2). Eisenpniktide lieferten bislang jedoch mehr Rätsel als Erklärungen. Selbst in der normalleitenden Phase ist derzeit unklar, ob die Wechselwirkung der Elektronen untereinander eine ähnlich große Rolle spielt wie in Kupraten, oder ob die Elektronen sich in diesem Material weitestgehend unabhängig voneinander bewegen. Ein weiteres Rätsel stellten die magnetischen Momente dar, die in theoretischen Vorhersagen als sehr viel größer berechnet wurden als dann im Experiment gemessen wurde.

    Quantenfluktuationen als Ursache

    Dieses letztere Rätsel bei Eisenpniktiden hat Philipp Hansmann während seiner Doktorarbeit nun gelöst. Gemeinsam mit Kollegen in der Arbeitsgruppe von TU-Professor Karsten Held und Professor Ryotaro Arita, mit dem Hansmann das Projekt während eines Forschungsaufenthalts an der Universität Tokyo gestartet hatte, fand er die Ursache für die sehr viel kleineren gemessenen Momente: Quantenfluktuationen. Hierdurch fluktuiert das magnetische Moment in der Zeit, so dass der Langzeit-Mittelwert sehr viel kleiner als das Kurzzeit-Moment auf der Femtosekunden-Skala ist (siehe Abb. 3). Während bisherige theoretische Rechnungen das Kurzzeit-Moment bestimmt haben, wurde experimentell der Langzeit-Mittelwert u.a. mit Neutronenstreuung und Myonenspin-Spektroskopie (µSR) gemessen. Die Ergebnisse wurden in der renommierten Fachzeitschrift Physical Review Letter publiziert (http://prl.aps.org/abstract/PRL/v104/i19/e197002).
    Ein erstes Experiment an der Technischen Universität Dresden, das mit Hilfe der Röntgenabsorptionsspektroskopie das magnetische Moment auf kurzen Zeitskalen misst, bestätigt die Theorie eines sehr viel größere Kurzzeit-Moments.

    Phänomen Supraleitung

    Supraleiter sind Materialien die unterhalb weniger Kelvin - der materialabhängigen Sprungtemperatur - elektrische Ströme vollständig verlustfrei transportieren. Während die Supraleitung in einfachen Metallen wie z.B. Quecksilber auf Gitterschwingungen zurückgeführt werden kann, ist die sogenannte Hochtemperaturleitung (Supraleitern mit einer hohen Sprungtemperatur) wie in Kupraten und Eisenpniktiden, noch nicht verstanden. Einige Hochtemperatursupraleiter haben Sprungtemperaturen von mehr als 77K (-196 Grad Celsius), sodass die Supraleitung durch Kühlung mit flüssigem Stickstoff aufrecht erhalten werden kann. Für eine weitergehende technische Anwendung würden aber noch sehr viel höhere Spungtemperaturen benötig. Ohne ein besseres Verständnis des Mechanismus, der der Hochtemperatursupraleitung zugrunde liegt, ist dies sicherlich ein schwieriges Unterfangen.

    Fotodownload: http://tuweb.tuwien.ac.at/index.php?id=10361

    Abb. 1: Eisenpniktid-Verbindungen: Lanthanoxid (La2O3), Eisen (Fe), Arsen (As)

    Abb. 2: Zeitskala: von der Kupferzeit zur Eisenzeit

    Abb. 3: Magnetische Momente

    Rückfragehinweise:
    Technische Universität Wien
    Institut für Festkörperphysik
    Wiedner Hauptstr. 8, 1040 Wien

    Univ.Ass. Dipl.-Phys. Dr.rer.nat.
    Philipp Hansmann
    T: +43 (1) 58801 - 137 62
    hansmann@ifp.tuwien.ac.at

    Univ.Prof. Dipl.-Phys. Dr.rer.nat.
    Karsten Held
    T: +43 (1) 58801 - 137 10
    held@ifp.tuwien.ac.at

    Aussender:
    Technische Universität Wien
    Büro für Öffentlichkeitsarbeit
    Operngasse 11/5. Stock, 1040 Wien
    Bettina Neunteufl, MAS
    T: +43 1 58801 41025
    M: +43 664 484 50 28
    bettina.neunteufl@tuwien.ac.at


    Bilder

    Dr. Philipp Hansmann
    Dr. Philipp Hansmann

    None

    Abb. 1: Eisenpniktid-Verbindungen: Lanthanoxid (La2O3), Eisen (Fe), Arsen (As)
    Abb. 1: Eisenpniktid-Verbindungen: Lanthanoxid (La2O3), Eisen (Fe), Arsen (As)

    None


    Merkmale dieser Pressemitteilung:
    Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


     

    Dr. Philipp Hansmann


    Zum Download

    x

    Abb. 1: Eisenpniktid-Verbindungen: Lanthanoxid (La2O3), Eisen (Fe), Arsen (As)


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).