idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
30.09.2012 19:00

Einzelner Proteinkomplex erzeugt Strom: Solarzelle aus einem Molekül

Christine Kortenbruck Presse- und Öffentlichkeitsarbeit
Munich-Centre for Advanced Photonics (MAP)

Ein Team der Technischen Universität München, geleitet von Joachim Reichert, Johannes Barth (Exzellenzcluster MAP) und Alexander Holleitner (Exzellenzcluster NIM) hat in Kooperation mit Itai Carmeli (Tel Aviv University) eine Methode entwickelt, um den Photostrom eines einzelnen Moleküls zu messen. Die Physiker konnten zeigen, dass ein einzelnes Photosystem-Protein als Baustein in photoaktive Nanoschaltkreise integriert und direkt angesteuert werden kann. Dabei behält das Protein seine optischen Eigenschaften. Es fungiert als lichtgetriebene hocheffiziente Elektronenpumpe und kann als Stromgenerator in winzigen elektrischen Bauelementen dienen (Nature Nanotechnology).

Die Wissenschaftler untersuchten das Chlorophyll-Protein Photosystem I, welches in den Membranen von Chloroplasten in Blaualgen zu finden ist. Pflanzen, Algen und Bakterien benutzen Photosynthese, um Sonnenenergie in chemische Energie umwandeln. Die ersten Schritte dieses Prozesses, bei denen das System Licht absorbiert und die aufgenommene Energie in eine Elektronenbewegung, also einen Stromfluss, übertragen wird, findet in photosynthetischen aktiven Proteinen statt, die sich aus Chlorophyllen und Carotinoiden zusammensetzen. Bisher gab es kein Messsystem, mit dem man einzelne Moleküle elektrisch kontaktieren und sie gleichzeitig sehr starken optischen Feldern aussetzen konnte und das empfindlich genug war um diesen winzigen Strom aus einem einzelnen Protein zu messen. Nach der Absorption eines Photons wird ein Elektron mit einer Effizienz von nahezu 100% von der einen Seite des Proteins zur anderen übertragen. Durch die winzigen Dimensionen eignet sich dieses System auf der Nanometerskala für Anwendungen in der Optoelektronik, bei dem Licht in elektrischen Strom umgewandelt werden soll.

Für die Wissenschaftler bestand die erste Herausforderung darin, eine Methode zu finden, mit der sich einzelne Moleküle in starken optischen Feldern kontaktieren lassen. Zentrales Element der Messvorrichtung sind Proteine, die sich selbst auf einer Oberfläche anordnen und kovalent über eine Cysteingruppe an diese anbinden. Der Photostrom wird dann mit einem sehr dünn mit Metall beschichteten Glasfragment gemessen, wie es in der Nahfeldmikroskopie benutzt wird. Dieses Glasfragment dient gleichzeitig als elektrischer Kontakt und als Lichtquelle. Licht wird durch die Innenseite des Glasfragments zum Protein geleitet und die sehr kleinen optisch angeregten Ströme können gemessen werden.

Das Forschungsprojekt wurde finanziell unterstützt von der Deutschen Forschungsgemeinschaft über SPP 1243 (Projekte HO 3324/2 und RE 2592/2), den Exzellenzclustern Munich-Centre for Advanced Photonics (MAP) und Nanosystems Initiative Munich (NIM) sowie dem ERC Advanced Grant MolArt 43 (no. 47299).

Originalpublikation:
Photocurrent of a single photosynthetic protein
Daniel Gerster, Joachim Reichert, Hai Bi, Johannes V. Barth, Simone M. Kaniber, Alexander W. Holleitner, Iris Visoly-Fisher, Shlomi Sergani, and Itai Carmeli

Links: http://dx.doi.org/ http://www.nature.com/

Contact:

Dr. Joachim Reichert,
Technische Universität München
Physik-Department E20
James-Franck Straße, D-85748 Garching, Germany
Tel.: +49 89 289 12443 – Fax:+49 89 289 12338
E-Mail: joachim.reichert@tum.de – Internet: http://www.e20.ph.tum.de/

Prof. Alexander W. Holleitner
Technische Universität München
Walter Schottky Institut – Zentrum für Nanotechnologie und Nanomaterialien
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11575 – Fax: +49 89 289 12600
E-Mail: holleitner@wsi.tum.de – Internet: http://www.wsi.tum.de

Dr. Itai Carmeli
Tel Aviv University
Center for NanoScience and Nanotechnology and School of Chemistry,
Tel Aviv 69978, Israel.
Tel.: +972-3-6405704 – Fax: +972-3-6405612
E-Mail: itai@post.tau.ac.il – Internet: http://www.tau.ac.il


Weitere Informationen:

http://www.e20.ph.tum.de/ - Joachim Reichert
http://www.wsi.tum.de - Alexander Holleitner
http://www.tau.ac.il - Itai Carmeli


Bilder

Das Photosystem-I (hier grün) wird über die Elektrode (ganz oben) optisch angeregt. Ein Elektron wird dann Schritt für Schritt in nur 16 Nanosekunden übertragen.
Das Photosystem-I (hier grün) wird über die Elektrode (ganz oben) optisch angeregt. Ein Elektron wir ...
Grafik: Lehrstuhl E20/ TUM Physikdepartment
None


Ergänzung vom 02.10.2012

Unglücklicherweise wurde ein nicht freigegebenes Bild mit falschen Bildrechten verschickt. Bitte verwenden Sie statt dessen die neue Grafik mit folgenden Bildrechten:
Copyright: Christoph Hohmann, Nanosystems Initiative Munich (NIM)


Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Elektrotechnik, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch


 

Das Photosystem-I (hier grün) wird über die Elektrode (ganz oben) optisch angeregt. Ein Elektron wird dann Schritt für Schritt in nur 16 Nanosekunden übertragen.


Zum Download

x

Hilfe

Die Suche / Erweiterte Suche im idw-Archiv
Verknüpfungen

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

Klammern

Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

Wortgruppen

Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

Auswahlkriterien

Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).