idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.02.2013 08:30

Wir stammen von Steinen ab – oder: Woher nahm das erste Leben die Energie?

Dr. Victoria Meinschäfer Stabsstelle Kommunikation
Heinrich-Heine-Universität Düsseldorf

    Forscher von der Heinrich-Heine-Universität Düsseldorf und vom University College London stellen in der renommierten Zeitschrift Cell ein Modell vor, wie sich die frühesten Formen des Lebens in der unmittelbaren Umgebung von unterseeischen Hydrothermalquellen entwickelt haben können. Kompartimente im Gestein der Quellen können die Prototypen für Zellen gewesen sein.

    Der Schlüssel zum Leben ist Energie: Lebende Organismen benötigen hiervon große Mengen, um ihren Stoffwechsel anzutreiben und organische Moleküle zu produzieren. Bei den Frühformen des Lebens war der Energiebedarf nochmals deutlich höher als bei modernen Zellen, weil jenen ersten Lebensformen Enzyme fehlten, die auf katalytischem Weg eine deutlich effizientere Stoffumwandlungen ermöglichen. Der Schlüssel zur Energiebereitstellung ist, auch heute noch, ein Konzentrationsgefälle von Ionen über eine begrenzende Membran hinweg.
    Prof. Dr. William Martin (Heinrich-Heine-Universität Düsseldorf, Institut für Molekulare Evolution) und Dr. Nick Lane (University College London, Department of Genetics, Evolution and Environment) erläutern in ihrem Artikel „The origin of membrane bioenergetics“ in der Zeitschrift Cell, wie in frühester Zeit die ersten Zellen geochemische Energie in biologische Ernergie überführen konnten. Die anorganischen Wände von natürlich entstehenden mineralischen Kompartimenten (winzigen Poren) in Hydrothermalquellen am Boden der Ur-Ozeane sind der Schlüssel.
    Heutige Hydrothermalquellen weisen eben solche kleinen Kammern, etwa in der Größe einer biologischen Zelle, auf. Wo Wasserstoff-angereichertes alkalisches Wasser aus dem Erdinnern auf neutrales, ozeanisches Wasser trifft, resultiert ein Wasserstoff-Konzentrationsgefälle, ein Ionen-Gradienten, über diese Wände. Just solche Gradienten werden heute von allen Lebewesen für die Energiegewinnung genutzt. Aber heutige Lebewesen müssen diese Gradienten im Zuge der Atmung aufbauen, alkalische Hydrothermalquellen liefern die Gradienten umsonst. Diese Energiequelle konnten die Vorfahren der ersten Lebewesen anzapfen, um organische Moleküle, Grundbausteine des Lebens wie Aminosäuren und Nukleinsäuren, zu bilden. Kurzum: Diese mineralische Protozellen können die ersten Lebensformen gewesen sein.
    Es fehlt der Schritt in die Freiheit: Hierzu war die „Erfinding“ einer organischen Zellmembran und einer Zellwand, die dem Innendruck der Zelle standhält, erforderlich. Nur so konnten diese Zellen aus ihrem anorganischen Gehäuse entkommen, und als freilebende Zellen im Ozean leben.
    Die Autoren erkennen ein sehr ähnliches chemisches Verhalten auch bei bestimmten, heute noch vorkommenden Bakterien und Archaeen, die in ähnlich extremen Umgebungen leben, wie sie in den Urmeeren vor Jahrmilliarden geherrscht haben. Solche Acetat- und Methan-bildende Prokaryoten (Zellen ohne Zellkern) sind demnach direkte Nachfahren der allerersten Lebensformen.
    Vor 150 Jahren tat sich die Menschheit schwer mit der Vorstellung Darwins, dass wir alle mit Affen verwandt sind. „Schauen wir weiter zurück in die Vergangenheit,“ so Dr. Lane und Prof. Martin, „so gehören letztendlich auch Gesteine zu unserem Stammbaum“. „Auf der frühen Erde gab es nur Gestein und Wasser“, so William Martin weiter, und: „Warum sollte also die Feststellung überraschen, dass wir von Steinen abstammen? Wir konnten Verbindungen zwischen einerseits den geologischen Gegebenheiten auf der frühen Erde, und andererseits bestimmten Gruppen der heute noch lebenden Zellen knüpfen. Eine solche Verbindung war bisher noch nicht bekannt.“

    Nick Lane, William F. Martin, „The origin of membrane bioenergetics”, Cell – Vol. 151, Issue 7, 21. Dezember 2012

    Kontakt:
    Prof. Dr. William Martin
    Institut für Molekulare Evolution
    Tel.: 0211-81-13011
    E-Mail: w.martin@hhu.de


    Weitere Informationen:

    http://www.sciencedirect.com/science/article/pii/S0092867412014389 Originalartikel


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Chemie, Geowissenschaften, Meer / Klima, Umwelt / Ökologie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).