idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.03.2013 10:32

Gleichzeitiger Anstieg von Kohlendioxid und antarktischer Temperatur am Ende der letzten Eiszeit

Ralf Röchert Kommunikation und Medien
Alfred-Wegener-Institut für Polar- und Meeresforschung

    Beim Übergang von der letzten Kalt- zur jetzigen Warmzeit vor 20.000 bis 10.000 Jahren ist der Kohlendioxidgehalt in der Atmosphäre zeitgleich mit der antarktischen Temperatur angestiegen. Zu diesem Schluss kommt ein europäisches Forscherteam, das das Alter der eingeschlossenen Luftblasen im antarktischen Eisbohrkern EPICA Dome C neu bestimmt hat. Die Studie unter Beteiligung des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung, erscheint jetzt in der Fachzeitschrift Science.

    Veränderungen in der chemischen Zusammensetzung der Atmosphäre in der Vergangenheit kann aus Luftblasen rekonstruiert werden, die in antarktischem Eis eingeschlossen sind. Aus bisher gewonnenen Eisbohrkernen konnte so die natürliche Variabilität des Treibhausgases Kohlendioxid und der antarktischen Temperatur während der vergangenen 800.000 Jahre bestimmt werden. Wie schnell Luftblasen in Eisbohrkernen welcher Tiefe eingelagert wurden, haben Forscher unter der Leitung des französischen Laboratoire de Glaciologie et Geophysique de l’Environnement jetzt neu berechnet. Mit Hilfe des Stickstoffisotops 15 N konnten sie zeigen, dass die eingeschlossene Luft im EPICA Dome C Eiskern während des Übergangs von der letzten Kalt- zur jetzigen Warmzeit älter ist als bisher angenommen. Dieser Eiskern wurde im Rahmen des Projektes EPICA (European Project for Ice Coring in Antarctica) gewonnen.

    „Wir haben festgestellt, dass frühere Altersberechnungen der eingeschlossenen Gase auf Grund heutigen Wissens zu ungenau sind,“ sagt Dr. Peter Köhler, Physiker am Alfred-Wegener-Institut (AWI), Helmholtz-Zentrum für Polar- und Meeresforschung und Co-Autor der Science-Studie. Temperatur- und Treibhausgasmessungen an Eiskernen werden in verschiedenen Tiefen gemessen. Jeder Tiefe wird dann ein Alter zugewiesen. Hierbei unterscheiden sich die notwendigen Altersmodelle für die Temperatur und die Treibhausgase. Temperaturänderungen lassen sich indirekt über die Isotopie der Wassermoleküle des Eises nachweisen. Konzentrationen der Treibhausgase werden direkt an antiken Luftblasen gemessen, die bei ihrer Entstehung erst komplett von der Atmosphäre getrennt sein müssen. Dies geschieht am unteren Ende des Firnes beim sogenannten Blasenabschluss in einer Tiefe von etwa 100 Metern, wenn sich Schnee zu Eis verdichtet.

    Bei einer Reanalyse des Blasenabschlusses im EPICA Dome C Eisbohrkerns aus der Antarktis haben die Forscher jetzt Veränderungen in der Dicke der Firnschicht mit Hilfe der 15 N-Isotope neu bestimmt und in die Altersbestimmung mit einbezogen. Ihr Ergebnis: Der Kohlendioxidgehalt der Atmosphäre ist während des Übergangs von der letzten Kalt- zur Warmzeit vor 20.000 bis 10.000 Jahren „gleichzeitig“ mit der antarktischen Temperatur angestiegen. Als „gleichzeitig“ definieren die Wissenschaftler dieser Studie Zeitunterschiede von weniger als 200 Jahren während der vier im untersuchten Zeitraum bekannten abrupten Veränderungen in beiden Klimavariablen.

    „Wir beschreiben den zeitgleichen Anstieg der antarktischen Temperatur und des globalen atmosphärischen Kohlendioxidgehalts während des letzten Übergangs von Kalt- zu Warmzeit. Diese Gleichzeitigkeit legt nahe, dass es starke Rückkopplungsmechanismen gibt, die beide Klimavariablen miteinander verbinden. Wichtig ist hierbei, dass unsere Studie nur Details über die Gleichzeitigkeit dieser beider Variablen zeigt. Wenn wir vollständig verstehen wollen, wie das Ende der letzten Eiszeit stattgefunden hat, benötigen wir darüber hinaus Daten über Temperaturänderungen in anderen Teilen der Erde und müssen sie unseren Ergebnissen zeitlich zuordnen. Für diese letztendliche Interpretation sind nicht nur andere Klimazeitreihen, sondern auch Klimamodelle notwendig“, so AWI-Physiker Köhler.

    Hinweise für Redaktionen

    Originalveröffentlichung:
    F. Parrenin, V. Masson-Delmotte, P. Köhler, D. Raynaud, D. Paillard, J. Schwander, C. Barbante, A. Landais, A. Wegner, J. Jouzel: Synchronous Change of Atmospheric CO2 and Antarctic Temeprature During the Last Deglacial Warming. Science XX (2013); DOI: 10.1126/science.1226368

    Beteiligte Institutionen:
    Laboratoire de Glaciologie et Géophysique de l'Environnement (CNRS/UJF), Grenoble, Frankreich.
    Laboratoire des Sciences du Climat et de l'Environnement (CEA/CNRS/UVSQ-IPSL), Gif-sur-Yvette, Frankreich.
    Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Deutschland.
    Physics Institute, University of Bern, Bern, Schweiz.
    Department of Environmental Sciences, University of Venice, Venedig, Italien.
    Institute for the Dynamics of Environmental Processes–CNR, University of Venice, Venedig, Italien.

    Druckbare Bilder finden Sie unter http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

    Ihr wissenschaftlicher Ansprechpartner ist Dr. Peter Köhler (E-Mail: Peter.Koehler(at)awi.de). Ihre Ansprechpartnerin in der Abteilung Kommunikation und Medien des Alfred-Wegener-Instituts ist Dr. Folke Mehrtens (Tel. 0471-4831-2007, E-Mail: Folke.Mehrtens(at)awi.de).

    Folgen Sie dem Alfred-Wegener-Institut auf Twitter und Facebook. So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

    Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.


    Bilder

    EPICA-Eisbohrkern aus einer Tiefe von ca. 2650 m, ca. 100 m Ÿüber dem Felsuntergrund. Der Eisbohrkern wird in 1m-StŸücke zersŠägt. In dieser großen Tiefe ist das Eis kristallklar, wie aus dem durchscheinenden SŠägeblatt zu erkennen ist.
    EPICA-Eisbohrkern aus einer Tiefe von ca. 2650 m, ca. 100 m Ÿüber dem Felsuntergrund. Der Eisbohrker ...
    Foto: H. Oerter, Alfred-Wegener-Institut
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Geowissenschaften, Meer / Klima
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    EPICA-Eisbohrkern aus einer Tiefe von ca. 2650 m, ca. 100 m Ÿüber dem Felsuntergrund. Der Eisbohrkern wird in 1m-StŸücke zersŠägt. In dieser großen Tiefe ist das Eis kristallklar, wie aus dem durchscheinenden SŠägeblatt zu erkennen ist.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).