idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.04.2014 14:38

Auf dem Weg zum Quantencomputer: 50 Jahre alte Vorhersage bestätigt

Dipl.-Biologin Annette Stettien Unternehmenskommunikation
Forschungszentrum Jülich

    Jülich, 17. April 2014 – Wissenschaftler der Universität Yale haben eine experimentelle Schaltung zur Speicherung von Quanteninformationen entwickelt, welche die Speicherdauer von supraleitenden Quantenschaltern um einige Größenordnungen verbessert. Gemeinsam mit dem Jülicher Physiker Dr. Gianluigi Catelani bestätigten die Wissenschaftler in diesem Zusammenhang erstmals eine 50 Jahre alte quantenphysikalische Vorhersage. Die Ergebnisse sind in der Fachzeitschrift Nature vom 17. April 2014 nachzulesen.

    Das Phänomen der Supraleitung wird nicht nur zum Bau ultrastarker Elektromagnete in Magnetresonanztomografen und Teilchenbeschleunigern genutzt. Supraleitende Schaltkreise haben auch eine enorme Bedeutung für die Entwicklung von Quantencomputern. Entsprechende Systeme könnten beim Lösen bestimmter Aufgaben eines Tages eine deutlich höhere Rechengeschwindigkeit erzielen als herkömmliche Digitalrechner.

    Supraleitende Schaltkreise ermöglichen es, Quanten-Bits - kurz Qubits - darzustellen, mit denen Quantenrechner Informationen speichern und verarbeiten. Unter dem Einfluss benachbarter Qubits können diese ihren Wert verändern, indem sie etwa von "0" auf "1" springen oder beide Werte zugleich annehmen. Doch durch das Umschalten verlieren die Qubits Energie, wodurch die Quanteninformation verloren geht.

    In dem Yale-Experiment konnten die Wissenschaftler zeigen, dass ein supraleitendes Qubit immun gegen Verluste ist, die durch sogenannte Quasiteilchen verursacht werden. Physiker bezeichnen damit kollektive Anregungen mehrerer Teilchen, die sich in einigen Eigenschaften wie Teilchen verhalten und dem Qubit Energie entziehen können.

    Die experimentellen Fortschritte in Yale sind daher ein wichtiger Schritt auf dem Weg zum Quantenrechner. Und nicht nur das. Mit ihnen bestätigten die Wissenschaftler erstmals eine theoretische Vorhersage des britischen Physikers und Nobelpreisträgers Brian Josephson. In den 1960er Jahren hatte er vorausgesagt, dass sich der Energieverlust an einem sogenannten Josephson Kontakt – dem elementaren Bauelement der supraleitenden elektrischen Schaltkreise – unter bestimmten Voraussetzungen vermeiden lässt.

    Dr. Gianluigi Catelani vom Jülicher Peter Grünberg Institut (PGI-2) hat mit seinen Berechnungen gezeigt, dass dieser verlustfreie Spezialfall auf einen quantenmechanischen Interferenzeffekt zurückzuführen ist, der sich auch für das Speichern und die Verarbeitung von Qubits nutzen lässt. Dabei löschen sich die an der Kontaktstelle entstehenden Quasiteilchen gegenseitig aus, sodass keine Energie verloren geht.

    Originalpublikation:
    Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles
    Ioan M. Pop, Kurtis Geerlings, Gianluigi Catelani, Robert J. Schoelkopf, Leonid I. Glazman, & Michel H. Devoret
    Nature, published on 17 April 2014, doi 10.1038/nature13017
    Article: http://www.nature.com/nature/journal/v508/n7496/abs/nature13017.html

    Weitere Informationen:
    Pressemitteilung der Yale University (engl.): http://news.yale.edu/2014/04/16/yale-progress-fight-against-quantum-dissipation
    Forschung am Peter Grünberg Institut, Theoretische Nanoelektronik (PGI-2): http://www.fz-juelich.de/pgi/pgi-2

    Ansprechpartner:
    Dr. Gianluigi Catelani, Peter Grünberg Institut,
    Theoretische Nanoelektronik (PGI-2)
    Tel. +49 2461 61-9360
    g.catelani@fz-juelich.de

    Pressekontakt:
    Tobias Schlößer
    Tel. +49 2461 61-4771
    t.schloesser@fz-juelich.de


    Weitere Informationen:

    http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-04-17quantu...


    Bilder

    Rasterelektronenmikroskopische Aufnahme eines Josephson-Kontakts, dem Grundbaustein zum Speichern von Quanten-Bits in supraleitenden Schaltkreisen.
    Rasterelektronenmikroskopische Aufnahme eines Josephson-Kontakts, dem Grundbaustein zum Speichern vo ...
    Quelle: I. Pop / Yale University
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Elektrotechnik, Informationstechnik, Physik / Astronomie
    regional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Rasterelektronenmikroskopische Aufnahme eines Josephson-Kontakts, dem Grundbaustein zum Speichern von Quanten-Bits in supraleitenden Schaltkreisen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).