idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
10.12.2015 14:27

Gödel und Turing in der Welt der Quantenphysik: Fundamentales Problem der Quantenphysik unlösbar

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Ein vielen fundamentalen Fragen der Teilchen- und Quantenphysik zugrunde liegendes mathematisches Problem ist nachweislich unlösbar. Den Beweis dafür haben Wissen-schaftler der Technischen Universität München (TUM), des University College London (UCL) und der Universidad Complutense in Madrid – ICMAT erbracht. Es ist das erste wichtige Problem der Physik, für das eine so grundlegende Einschränkung gilt. Die Ergebnisse zeigen, dass sogar eine perfekte und vollständige Beschreibung der mikroskopischen Eigenschaften eines Materials nicht ausreicht, um sein makroskopisches Verhalten vorherzusagen.

    Eine kleine "spektrale Lücke" – die Energie, die benötigt wird, um ein Elektron aus dem
    niedrigsten Energiezustand in einen angeregten Zustand zu befördern – ist die zentrale Eigenschaft von Halbleitern. In ähnlicher Weise spielen spektrale Lücken auch bei vielen anderen Materialien eine wichtige Rolle. Schließt sich diese spektrale Lücke, das heißt, wird der Energieabstand sehr klein, können Materialien sprunghaft zu einem völlig anderen Verhalten übergehen. Ein Beispiel hierfür ist der Übergang zur Supraleitung bei tiefen Temperaturen.

    Eine gängige Methode bei der Suche nach Materialien, die Strom auch bei Raumtemperatur verlustlos leiten oder andere wünschenswerte Eigenschaften besitzen, ist die mathematische Modellierung: Ausgehend von einer mikroskopischen Beschreibung des Materials wird auf die makroskopischen Eigenschaften geschlossen. Die von den Wissenschaftlern heute in Nature veröffentlichte Studie zeigt jedoch entscheidende Grenzen dieses Ansatzes. Mit ausgefeilter Mathematik bewiesen die Autoren, dass auch bei einer vollständigen mikroskopischen Beschreibung eines Quantenmaterials im Allgemeinen nicht vorhersagbar ist, ob das Material eine spektrale Lücke hat.

    „Alan Turing ist berühmt für seine Rolle beim Knacken des Enigma-Codes“, sagt Co-Autor Dr. Toby Cubitt, Informatiker am UCL. „Aber unter Mathematikern und Informatikern, er ist noch bekannter für seinen Beweis, dass bestimmte mathematische Fragen ‚unentscheidbar’ sind – sie sind weder wahr noch falsch, sondern außerhalb der Reichweite der Mathematik. Wir haben gezeigt, dass die spektrale Lücke eines dieser unentscheidbaren Probleme ist. Das bedeutet, es kann keine allgemeine Methode geben um festzustellen, ob ein quanten-mechanisch beschriebenes Material eine spektrale Lücke hat, oder nicht. Dies begrenzt die Möglichkeiten, das Verhalten von Quantenmaterialien vorherzusagen entscheidend – möglicherweise sogar grundlegende Aussagen in der Teilchenphysik.“

    Eine Million Dollar zu gewinnen!

    Das bekannteste Problem bezüglich spektraler Lücken ist die Frage, ob das Standardmodell der Teilchenphysik eine spektrale Lücke vorhersagt. Die „Yang-Mills-Massenlücke-Vermutung“ gilt als eines der sieben sogenannten Millenium-Probleme. Teilchenphysikalische Experimente wie CERN und numerische Rechnungen auf Supercomputern legen nahe, dass es auch hier eine spektrale Lücke gibt. Demjenigen, der dies mathematisch aus den Gleichungen des Standardmodells beweist, winkt ein Preis des Clay Mathematics Institute (USA) in Höhe von einer Million Dollar.

    „In bestimmten Fällen kann ein Teilproblem lösbar sein, auch wenn das allgemeine Problem unentscheidbar ist. Den begehrten Preis könnte also noch jemand gewinnen“, sagt Dr. Cubitt. „Aber unsere Ergebnisse deuten stark darauf hin, dass einige der großen offenen Probleme der theoretischen Physik nachweislich unlösbar sein könnten.“

    „Seit den Arbeiten von Turing und Gödel in den 1930er Jahren war bekannt, dass es prinzipiell unentscheidbare Probleme gibt“, sagt Michael Wolf, Professor für Mathematische Physik an der Technischen Universität München. „Bisher fanden sich solche jedoch nur in sehr abstrakten Winkeln der theoretischen Informatik und der mathematischen Logik. Niemand hätte so etwas mitten im Herzen der theoretischen Physik erwartet. Doch unsere Ergebnisse ändern dieses Bild. Aus einer mehr philosophischen Perspektive heraus betrachtet sind sie auch eine Herausfor-derung für den reduktionistischen Standpunkt: denn die unüberwindliche Schwierigkeit liegt gerade in der Herleitung der makroskopischen Eigenschaften aus einer mikroskopischen Beschreibung.“

    Eine schlechte und eine gute Nachricht

    „Das alles ist aber nicht nur eine schlechte Nachricht“, sagt David Pérez-García Professor an der Universidad Complutense de Madrid und am Instituto de Ciencias Matemáticas (ICMAT). „Der Grund dafür, dass dieses Problem nicht zu lösen ist, liegt darin, dass Modelle auf dieser Ebene ein extrem abnormes Verhalten zeigen. Es macht es uns unmöglich sie zu analysieren. Aber diese bizarre Verhalten zeigt auch eine sehr eigenartige, neue Physik, die niemand zuvor gesehen hat. Fügt man beispielsweise zu einem Stück Materie, egal wie groß, auch nur ein einziges Teilchen hinzu, könnte dies im Prinzip seine Eigenschaften dramatisch verändern. Neue Physik wie diese hat schon oft auch neue Technologien hervorgebracht.“

    Die Forscher versuchen nun, ihre in der künstlichen Welt mathematischer Modelle gewonnenen Erkenntnisse auf reale Quantenmaterialien zu übertragen, die im Labor hergestellt werden können.

    Die Forschung wurde von der John Templeton Foundation, der Royal Society (UK), dem spanischen Ministerium für Wirtschaft und Wettbewerbsfähigkeit (Mineco), der Madrider Regionalregierung und dem European Research Council (ERC) gefördert.

    Publikation:

    Undecidability of the Spectral Gap, Toby S. Cubitt, David Perez-Garcia, Michael M. Wolf; Nature, 528, 207–211, 10 December 2015 – DOI: 10.1038/nature16059

    Kontakt:

    Prof. Dr. Michael M. Wolf
    Technische Universität München
    Boltzmannstr. 3, 85748 Garching, Germany
    Tel.: +49 89 289 17002 – E-Mail: m.wolf@tum.de


    Weitere Informationen:

    http://www.nature.com/nature/journal/v528/n7581/full/nature16059.html Originalpublikation
    http://www-m5.ma.tum.de/Allgemeines/MichaelWolf Website Prof. Wolf
    http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32791/ Presseinformation der TU München


    Bilder

    Prof. David Perez-Garcia, Prof. Michael M. Wolf and Prof. Toby S. Cubitt in der Fakultät für Mathematik der TUM
    Prof. David Perez-Garcia, Prof. Michael M. Wolf and Prof. Toby S. Cubitt in der Fakultät für Mathema ...
    Andreas Battenberg / TUM
    None

    Die Voraussage, ob und wann ein Material supraleitend wird, ist schwieriger als gedacht, da sich ein zugrunde liegendes mathematisches Problem als prinzipiell unlösbar erwiesen hat.
    Die Voraussage, ob und wann ein Material supraleitend wird, ist schwieriger als gedacht, da sich ein ...
    Uli Benz / TUM
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Elektrotechnik, Mathematik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Prof. David Perez-Garcia, Prof. Michael M. Wolf and Prof. Toby S. Cubitt in der Fakultät für Mathematik der TUM


    Zum Download

    x

    Die Voraussage, ob und wann ein Material supraleitend wird, ist schwieriger als gedacht, da sich ein zugrunde liegendes mathematisches Problem als prinzipiell unlösbar erwiesen hat.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).