idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.03.2016 21:00

Neuronale Fehlentwicklung: Braunschweiger Forscher kommen der Ursache des Fragilen X Syndroms näher

Dr. Elisabeth Hoffmann Presse und Kommunikation
Technische Universität Braunschweig

    Beim Fragilen X Syndrom handelt es sich um die häufigste vererbbare Form kognitiver Beeinträchtigungen bei Kindern. Sie ist auch oft verbunden mit einer Autismus-Erkrankung. Welche neuronalen Fehlfunktionen ihm zu Grunde liegen, war bisher weitgehend unbekannt. Die Abteilung zelluläre Neurobiologie des Instituts für Zoologie der Technischen Universität Braunschweig hat jetzt eine weitere Ursache für die Entstehung dieser Krankheit eingrenzen können. (PNAS, online 07-03-2016)

    Neuronale Entwicklungsstörungen wie Autismus sind häufig durch eine Beeinträchtigung im Heranreifen der Verbindungen zwischen Nervenzellen gekennzeichnet. Wenn dort unwichtige Information nicht herausgefiltert werden, kann es zu einer regelrechten Reizüberflutung kommen. Den Ursachen dafür sind die Wissenschaftlerinnen und Wissenschaftler unter Leitung von Prof. Martin Korte, TU Braunschweig, jetzt ein Stück näher gekommen – und zwar im Rahmen von Grundlagenforschung zur Funktionsweise unseres Gehirns.

    Zwei „Verdächtige“, aber nur ein „Täter“

    Die Arbeitsgruppe beschäftigt sich seit längerem mit zwei Proteinen, die das Zytoskelett von Nervenzellen modulieren: den sogenannten Profilinen (Michaelsen et al. 2010, Rust & Michaelsen-Preusse, 2016). Die hochspezialisierten Nervenzellen unseres Gehirns enthalten zwei Profiline: eine evolutiv – also in der Entwicklung der Lebewesen - ältere Form (PFN1), welche in jeder Körperzelle gebildet wird, und zusätzlich das evolutiv jüngere PFN2a, das nur im Nervensystem zu finden ist. Beide kamen als „Kandidaten“ für die Ursachen von Entwicklungsstörungen infrage. Das Forschungsteam hat nun nachgewiesen, das nur PFN1 für die Fehlentwicklung zuständig ist.

    Wie funktioniert das Gehirn?

    Um dies festzustellen, mussten die Forscherinnen und Forscher zuvor der Funktionsweise eines gesunden Gehirns näher gekommen. Die Profiline sind in nahezu allen Lebewesen, vom Pilz bis zum Säugetier, anzutreffen. Auch im menschlichen Körper sind in verschiedenen Körperzelltypen mehrere Profiline nebeneinander zu finden. Sie sind in ihrem Aufbau sehr ähnlich, in ihrer Funktion jedoch höchstwahrscheinlich sehr unterschiedlich. Vor allem im Nervensystem ist dies bisher jedoch noch weitgehend unerforscht. Die Arbeitsgruppe konnte im Rahmen ihrer neuen Studie aufklären, warum unsere Nervenzellen genau zwei Profiline benötigen, und damit der Lösung eines Rätsels der Evolution einen Schritt näher kommen.

    Während unserer Entwicklung verbinden sich Milliarden von Nervenzellen zu funktionalen Netzwerken, die es dem menschlichen Gehirn erlauben, so verschiedene Aufgaben wie Fahrradfahren oder mitunter sogar das Verständnis der Relativitätstheorie zu bewältigen. Jede Nervenzelle bildet dabei Verknüpfungen, so genannte Synapsen, aus. Sie reifen heran, bis sie ihre volle Funktionsfähigkeit erreichen. Hierbei ist besonders das „Gerüst“, das strukturgebende Zellzytoskelett gefragt, welches der reifen Synapse schließlich eine stabile Form verleiht. Dieses Zytoskelett ist aber zugleich auch ein Leben lang flexibel, um auf Veränderungen der Signalübertragung reagieren zu können. Dieses Phänomen wird als neuronale Plastizität bezeichnet und erlaubt es uns, zu lernen und neue Informationen in diesen neuronalen Netzwerken abzuspeichern.

    Ein Protein baut auf, das andere sorgt für Beweglichkeit

    Das Forscherteam konnte zeigen, dass das ältere PFN1 vor allem für die Bildung und das Heranreifen von Synapsen wichtig ist, um also die Grundverschaltung des menschlichen Gehirns zu bewerkstelligen. Das evolutiv gesehen jüngere PFN2a hingegen spielt eine essentielle Rolle für die Modulierbarkeit der Synapsenform, ein Prozess der vor allem bei der Gedächtnisbildung benötigt wird. Bemerkenswerter Weise zeigen die Daten auch, dass trotz ihrer hohen biochemischen Ähnlichkeit beide Profilin-Formen in entgegengesetzter Weise auf das Zytoskelett einwirken.

    Eine entscheidende Ursache des Fragilen X Syndroms (FXS) ist das ungenügende Heranreifen von Synapsen, so dass diese im späteren Leben nicht für Lernvorgänge zur Verfügung stehen. Die Daten der Forschergruppe belegen nun, dass nur PFN1 und nicht PFN2a in der neurologischen Entwicklungsstörung FXS fehlerhaft reguliert ist. Es kann somit einer der Gründe sein, weshalb hier neuronale Netzwerke nicht richtig ausreifen.

    Das Wissen um die Faktoren, welche für die Synapsenbildung benötigt werden und wie genau diese Faktoren im Verlauf neuronaler Entwicklungsstörungen, wie des Fragilen X Syndroms, fehlreguliert sind, kann dazu beitragen, diese in der Zukunft besser behandeln zu können. Erst wenn die Ursachen einer Krankheit bekannt sind, kann man diese auch gezielt therapieren.

    Quelle:

    PNAS, online 07-03-2016
    Neuronal profilins in health and disease:
    Relevance for spine plasticity and Fragile X syndrome
    Kristin Michaelsen-Preusse, Sabine Zessin, Gayane Grigoryan, Franziska Scharkowski, Jonas Feuge, Anita Remus, and Martin Korte
    Division of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, D-38106 Braunschweig, Germany

    Angaben zur Studie:

    Ein Großteil der Ergebnisse wurde in primären neuronalen Zellkulturen gewonnen. Die Auswertung der Ergebnisse erfolgte stets blind gegenüber der jeweiligen Experimentgruppe, so dass eine unbeabsichtigte Beeinflussung durch den Experimentator ausgeschlossen werden konnte. Für die Studie wurden Organe von 65 Mäusen eingesetzt, die an der TU Braunschweig gezüchtet wurden. Die Signifikanz der Studienergebnisse wurde durch statistische Analyse validiert.

    Abbildung:

    Nervenzellfortsätze (Dendriten) einer Kontroll-Maus, des FXS Mausmodells sowie des FXS Mausmodells, in dem die zu geringe Konzentration von PFN1 durch Manipulation der Genexpression erhöht wurde (Überexpression von PFN1). Die Pfeile deuten auf einzelne Synapsen hin. Diese haben im reifen Zustand eine pilzähnliche Form, bei FXS jedoch sind sie unreif und gleichen eher langen, dünnen Ästchen. Die zusätzliche Expression von PFN1 läßt die Synapsen reifen, so dass die Form nicht mehr vom der Kontrolle zu unterscheiden ist.

    Kontakt:

    Prof. Dr. Martin Korte
    Technische Universität Braunschweig
    Zoologisches Institut, Abteilung Zelluläre Neurobiologie
    Spielmannstr. 7, 38106 Braunschweig
    Tel.: +49 531 391 3220
    E-Mail: m.korte@tu-braunschweig.de


    Weitere Informationen:

    http://www.zoologie.tu-bs.de/index.php/de/zellulaere-neurobiologie/zellulaere-ne...
    http://www.pnas.org/content/early/recent (7.3.2016 ab 21 Uhr)


    Bilder

    Nervenzellfortsätze (Dendriten) einer Kontroll-Maus, des FXS Mausmodells sowie des FXS Mausmodells (siehe Text).
    Nervenzellfortsätze (Dendriten) einer Kontroll-Maus, des FXS Mausmodells sowie des FXS Mausmodells ( ...
    „TU Braunschweig“, frei zur Veröffentlichung in diesem Kontext bei Nennung der Quelle.
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Ernährung / Gesundheit / Pflege
    überregional
    Forschungsergebnisse
    Deutsch


     

    Nervenzellfortsätze (Dendriten) einer Kontroll-Maus, des FXS Mausmodells sowie des FXS Mausmodells (siehe Text).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).