idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
13.10.2016 10:00

Dem Gehirn bei der Arbeit zuschauen

Sonja Opitz, Abteilung Kommunikation
Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

    Live dabei sein, wenn Nervenzellen im Gehirn miteinander kommunizieren, das ist der Traum vieler Neurowissenschaftler. Eine neue Methode erlaubt es nun, die Aktivierung von größeren Nervenverbänden auch im Präklinischen Modell und in Echtzeit dreidimensional zu beobachten. Forscher des Helmholtz Zentrums München und der Technischen Universität München stellen die neuen Möglichkeiten nun im Nature Fachjournal ‚Light: Science & Applications‘ vor.

    Die größte Schwierigkeit beim Versuch, live ins Gehirn zu sehen, ist die Eindringtiefe. Denn ohne in die Struktur des Gehirns einzugreifen - und sie damit zumeist zu zerstören - verliert sich kurz nach der Oberfläche das Signal aufgrund der hohen Streuung im Gewebe. Daher blieben Untersuchungen am Gehirn mit optischen Methoden bis dato im wahrsten Sinne des Wortes sehr „oberflächlich“.

    Ein Team um Prof. Dr. Daniel Razansky, Gruppenleiter am Institut für Biologische und Molekulare Bildgebung (IBMI) am Helmholtz Zentrum München und Professor für Molekulare Bildgebungswissenschaften an der TU München, hat nun einen Weg gefunden, dieses Problem anzugehen. Grundlage des neuen Verfahrens ist die sogenannte Optoakustische Tomographie*, die es erlaubt, auch Signale in größeren Gewebetiefen auszuwerten. Dies kombinierten die Wissenschaftler mit einer Technik, die Konzentrationsunterschiede von Kalziumionen sichtbar macht, die durch Nervenaktivität entstehen**.

    „Auf diese Wiese können wir die bisherigen Grenzen der neuronalen Bildgebung deutlich überschreiten“, so Dr. Xosé Luis Deán-Ben vom IBMI, Erstautor der Studie. Das stellten die Wissenschaftler im Gehirn von erwachsen Zebrafischen (Danio rerio) unter Beweis, die mit einem stimulierenden Wirkstoff behandelt wurden. In einem entsprechenden Tomographen konnten die Wissenschaftler beobachten, wie das Kalziumsignal über die Nerven ins Gehirn weitergeleitet wurde. In einem nächsten Schritt konnten sie auch die Nervenimpulse der Fische in freier Bewegung nachverfolgen.

    Dem Lauffeuer auf der Spur

    „Der größte Erfolg für uns war allerdings die Analyse von ganzen Gehirnen der erwachsenen Tiere“, sagt Studienleiter Razansky. Diese hätten immerhin eine Größe von circa 2x3x4 Millimeter (ca. 24 mm3). Aktuelle Methoden würden nur etwa einen Kubikmillimeter analysieren, so die Forscher. Gewebe vom Ausmaß eines erwachsenen Zebrafischgehirns wären entsprechend für aktuelle Mikroskopiemethoden nicht zu untersuchen. Die technische Grenze für ihre Verfahren schätzen sie selbst auf etwa 1000 Kubikmillimeter bei einer zeitlichen Auflösung von 10 Millisekunden.

    Die gleichzeitige Beobachtung so vieler Nerven halten die Forscher für entscheidend bei der Suche nach Antworten zur Funktionsweise des Gehirns – sowohl im Normalzustand als auch im Krankheitsfall. „Durch unsere Methode können wir nun eine größere Zahl von Nerven gleichzeitig optisch beobachten. Stellen Sie sich diese neuronalen Netzwerke vor wie soziale Medien: bisher konnten wir mitlesen, wenn jemand (in diesem Fall eine Nervenzelle) seinem Nachbarn eine Nachricht überbringt. Nun können wir dabei zusehen, wie sich diese Nachricht wie ein Lauffeuer verbreitet“, erklärt Razansky. „Dadurch verbessert sich auch unser Verständnis dafür, wie das Gehirn arbeitet und möglicherweise ergeben sich dadurch Wege bei Fehlfunktionen therapeutisch einzugreifen“, so der Wissenschaftler weiter.

    Weitere Informationen

    * Diese Technologie ermöglicht eine präzise nichtinvasive 3D-Tiefendarstellung von Geweben. Dafür erwärmen schwache Laserimpulse das Zielgewebe, was zu dessen kurzzeitiger Ausdehnung führt und infolgedessen Ultraschallsignale erzeugt. Diese erfassen Wissenschaftler des Helmholtz Zentrums München dann mit einem entsprechenden Sensor und „übersetzen“ sie in dreidimensionale Bilder. Bisher nutzten sie die Technologie etwa um den Sauerstoffgehalt oder die Ausbreitung von Medikamenten im Blut zu messen. Die aktuelle Arbeit befasst sich nun mit deutlich schnelleren Prozessen – nämlich den Nervenimpulsen.

    ** Bei der Aktivierung von Nerven kommt es in der direkten Umgebung der Zellen zu einer Verschiebung von Kalziumionen, die durch sogenannte Ionenkanäle hinein bzw. hinaus transportiert werden. Diese Konzentrationsschwankungen können die Wissenschaftler durch sogenannte genetically encoded calcium indicators (GECIs) nachweisen. Sie ändern je nachdem ob Kalzium vorhanden ist oder nicht ihr Absorptionsspektrum, also ihre Farbe.

    Hintergrund:
    Für seine Forschung erhielt Razansky begehrte Mittel aus der Forschungsförderung des Europäischen Forschungsrats (ERC) und der US-Gesundheitsbehörde (NIH).
    https://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2016/pressemi...

    Original-Publikation:
    Deán-Ben, XL. et al. (2016): Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light: Science & Applications, doi:10.1038/lsa.2016.201
    http://aap.nature-lsa.cn:8080/cms/accessory/files/AAP-lsa2016201.pdf

    Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

    Das Institut für Biologische und Medizinische Bildgebung (IBMI) erforscht In-vivo-Bildgebungstechnologien für die Biowissenschaften. Es entwickelt Systeme, Theorien und Methoden zur Bildgebung und Bildrekonstruktion sowie Tiermodelle zur Überprüfung neuer Technologien auf der biologischen, vorklinischen und klinischen Ebene. Ziel ist es, innovative Werkzeuge für das biomedizinische Labor, zur Diagnose und dem Therapiemonitoring von humanen Erkrankungen bereit zu stellen. http://www.helmholtz-muenchen.de/ibmi

    Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 39.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. http://www.tum.de

    Ansprechpartner für die Medien:
    Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

    Fachlicher Ansprechpartner:
    Prof. Dr. Daniel Razansky, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Biologische und Medizinische Bildgebung, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 1587 - E-Mail: daniel.razansky@helmholtz-muenchen.de


    Weitere Informationen:

    http://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/2016/index.html - Weitere Meldungen des Helmholtz Zentrums München


    Bilder

    Das Bild zeigt  die Struktur des Zebrafischgehirns im Fluoreszenzbild links und im FONT-Bild rechts, was hochaufgelöste und dreidimensionale Informationen zur Nervenaktivität (Orange) ermöglicht.
    Das Bild zeigt die Struktur des Zebrafischgehirns im Fluoreszenzbild links und im FONT-Bild rechts, ...
    Quelle: Helmholtz Zentrum München
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Biologie, Elektrotechnik, Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Das Bild zeigt die Struktur des Zebrafischgehirns im Fluoreszenzbild links und im FONT-Bild rechts, was hochaufgelöste und dreidimensionale Informationen zur Nervenaktivität (Orange) ermöglicht.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).