idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
02.11.2016 13:11

Wenn Wasser zum Zerreißen gespannt ist

Stephan Brodicky Öffentlichkeitsarbeit
Universität Wien

    Wasser kann über lange Zeit einer beachtlichen Zugbelastung standhalten. Dies ist eine Voraussetzung für wichtige biologische Prozesse wie etwa den Wassertransport in Bäumen. Experimente über die Stabilität von Wasser unter Zugbelastung kamen bis dato jedoch zu stark unterschiedlichen Resultaten. PhysikerInnen um Christoph Dellago von der Universität Wien entwickelten mit Hilfe von Computersimulationen ein mikroskopisches Modell, das die Stabilität von Wasser abhängig von der angelegten mechanischen Spannung quantitativ vorhersagt. Dabei zeigte sich, dass die Zugstabilität von Wasser höher ist als bisher angenommen. Die aktuelle Studie erscheint im Fachmagazin "PNAS".

    Ein Nebeneffekt der Photosynthese von Pflanzen ist die Verdunstung von Wasser über die Blätter. Um den dadurch entstehenden Flüssigkeitsverlust auszugleichen, wird Wasser durch Unterdruck über dünne Kanäle vom Boden nach oben gezogen. Wasser kann unter solcher Zugbelastung, also unter negativem Druck, über lange Zeiten stabil bleiben, da die Anziehung zwischen den Molekülen, den kleinsten "Bausteinen" der Flüssigkeit, dem Zug entgegenwirkt. Jedoch ist diese Stabilität unter Spannung immer zeitlich beschränkt: Nach einiger Zeit "unter Zug" geht Wasser von der flüssigen Phase in Dampf über. Im Zuge dieses Übergangs bilden sich mikroskopische Dampfblasen, welche so lange wachsen, bis die Flüssigkeit letztendlich unter der angelegten Spannung "reißt".

    Experimente liefern widersprüchliche Resultate

    Sowohl die Stabilität von Wasser unter Zugbelastung als auch der Prozess der Blasenbildung selbst, die sogenannte Kavitation, sind von entscheidender Bedeutung für biologische Systeme und technische Anwendungen. Beispielsweise nützen Farne den abrupten Spannungsabfall durch Kavitation, um ihre Sporen wie ein Katapult wegzuschleudern. Kollabierende Dampfblasen können zum Beispiel an Schiffsschrauben oder Turbinenschaufeln zu Materialschäden führen.

    Aufgrund dieser praktischen Relevanz wird die Zugstabilität von Wasser seit über 300 Jahren experimentell untersucht. Unterschiedliche Messmethoden liefern jedoch stark voneinander abweichende Resultate für die Zugstabilität von Wasser – ein starkes Indiz für unbekannte Effekte bei der Messung, meint Christoph Dellago: "Da der Kavitationsprozess explosionsartig schnell abläuft und die entscheidenden Aspekte der Blasenbildung stattfinden, solange die Blasen sehr klein sind, ist eine Methode nötig, um Blasenbildung in Wasser mit molekularer Auflösung zu analysieren".

    Computersimulationen ermöglichen Analyse auf molekularer Ebene

    Dieser Blick auf molekularer Ebene gelang einer internationalen Forschungskollaboration um Christoph Dellago an der Fakultät für Physik der Universität Wien mit Hilfe von Computersimulationen. Diese aufwändigen Simulationen, die von Georg Menzl und Philipp Geiger am Hochleistungsrechner Vienna Scientific Cluster (VSC) durchgeführt wurden, erlauben eine Analyse der Blasenbildung mit enorm hoher räumlicher und zeitlicher Auflösung. "In der Computersimulation können wir viele mögliche Fehlerquellen ausschließen, die potenziell zu Abweichungen in den experimentellen Resultaten führen", erklären die Wissenschafter.

    Mithilfe dieser Simulationen entwickelten die Physiker der Universität Wien zusammen mit ForscherInnen aus Madrid und Lyon eine mikroskopische Theorie, die das Auftreten von Kavitation in Wasser abhängig von der angelegten Spannung quantitativ vorhersagt und zeigt, dass Wasser unter Zug stabiler ist als von vielen Experimenten vorhergesagt. "Eine Erkenntnis, die erst durch Computersimulationen möglich wurde, in denen selbst winzigste Blasen genau beobachtet werden konnten", so Christoph Dellago.

    Publikation in "PNAS":
    Georg Menzl, Miguel A. Gonzalez, Philipp Geiger, Frédéric Caupin, Jose L. F. Abascal, Chantal Valeriani, Christoph Dellago: Molecular mechanism for cavitation in water under tension, in PNAS 2016 (erscheint online am 2.11.2016)
    DOI 10.1073/pnas.1608421113

    Wissenschaftlicher Kontakt
    Univ.-Prof. Mag. Dr. Christoph Dellago
    Computergestützte Physik
    Universität Wien
    1090 Wien, Sensengasse 8
    T +43-1-4277-512 60
    M +43-664-602 77-512 60
    christoph.dellago@univie.ac.at

    Rückfragehinweis
    Mag. Alexandra Frey
    Pressebüro der Universität Wien
    Forschung und Lehre
    1010 Wien, Universitätsring 1
    T +43-1-4277-175 33
    M +43-664-602 77-175 33
    alexandra.frey@univie.ac.at

    Offen für Neues. Seit 1365
    Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at


    Bilder

    Momentaufnahme einer Simulation von Blasenbildung in Wasser unter Zugspannung. Durch das Wachsen einer Dampfblase (gelb) in Wasser (rot-weiß) geht das System von der flüssigen Phase in den Dampf über.
    Momentaufnahme einer Simulation von Blasenbildung in Wasser unter Zugspannung. Durch das Wachsen ein ...
    Copyright: Georg Menzl, Universität Wien
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Momentaufnahme einer Simulation von Blasenbildung in Wasser unter Zugspannung. Durch das Wachsen einer Dampfblase (gelb) in Wasser (rot-weiß) geht das System von der flüssigen Phase in den Dampf über.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).