idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
26.04.2017 13:15

Die clevere Zelle

Julia Wandt Stabsstelle Kommunikation und Marketing
Universität Konstanz

    Die Arbeitsgruppe Biologische Chemie an der Universität Konstanz entschlüsselt den molekularen Mechanismus, der das Schwarmverhalten von Bakterienpopulationen hemmt

    Bakterien sind in der Natur zumeist weniger Individualisten, sondern liegen als multizelluläre Kollektive vor. Sie können ihr Verhalten koordinieren, und manche Arten können sich wie ein Schwarm fortbewegen. In der Nachwuchsgruppe Biologische Chemie an der Universität Konstanz wird untersucht, wie Organismen dieses Bakterienverhalten manipulieren, vor allem aber hemmen können. Gruppenleiter Dr. Thomas Böttcher und sein Team mit der Doktorandin Sina Rütschlin (geborene Richter) haben die Biosynthese eines solchen Schwarminhibitors untersucht und kamen zum Ergebnis: Die Produktion des Schwarminhibitors hängt von spezifischen Substratverhältnissen in der Bakterienzelle ab. Dies hat darüber hinaus einen bedeutsamen evolutionären Aspekt: Die Arbeitsgruppe konnte damit zeigen, wie die Bakterienzellen mit wenig Aufwand verschiedenste Naturstoffe herstellen können. Die Ergebnisse könnten in Zukunft zur Überwindung von Infektionskrankheiten und zur Bekämpfung von Antibiotika-Resistenzen beitragen. Sie sind in der aktuellen Online-Ausgabe des Wissenschaftsjournals Cell Chemical Biology nachzulesen.

    Durch das Schwarmverhalten werden Bakterien Antibiotika gegenüber erheblich toleranter. Es kann vorkommen, dass selbst eine zehn- bis hundertfach erhöhte Konzentration nichts gegen sie ausrichtet. In seiner Postdoc-Zeit in den USA konnte Thomas Böttcher zwei Bakterienstämme aus einer Rotalgenprobe isolieren: Vibrio alginolyticus, der rasch schwärmt, und Shewanella algae, der diese Fortbewegung hemmt und dabei den Expansionsdrang seines Konkurrenten einschränkt. Shewanella algae erzielt diese Wirkung über ein sogenanntes Siderophor, das der Stamm produziert und mit dem die Bakterienzellen Eisen aus der Natur aufnehmen können.

    Die Frage lautete nun: Wie wird das Siderophor hergestellt? Bei der Sequenzierung des Bakteriums wurde ein Gen-Cluster gefunden, das als mögliche zelluläre Fabrik für das Siderophor infrage kam. „Unser Hauptbefund war, dass, anders als ursprünglich vermutet, das Enzym das entscheidende Siderophor nicht aufgrund seiner hohen Spezifität herstellt, sondern dass es hauptsächlich an den Substratverhältnissen in der Zelle liegt, welche Produkte hergestellt werden“, sagt der Chemiker, der Mitglied des Zukunftskollegs der Universität Konstanz ist. Dabei zeigte sich, dass das fragliche Enzym eigentlich eine Spezifität für einen völlig anderen Metaboliten (Stoffwechselprodukt) hätte. Die Zelle kann ihre Bausteine offenbar so regulieren, dass sie einen Metaboliten als Hauptprodukt herstellt, der vom Enzym selbst gar nicht bevorzugt würde, aber der Zelle einen wichtigen Vorteil verschafft.

    „Die Bakterienzelle stellt die Substrate so ein, dass gleichzeitig drei Metaboliten als Produkte entstehen. Dies ermöglicht eine gewisse Variabilität und erlaubt eine Vielfalt von Metaboliten möglichst ökonomisch herzustellen“, erklärt Thomas Böttcher. Dies macht eine schnelle evolutionäre Anpassung möglich.

    Dass sich nicht die Selektivität des Enzyms auf ein Hauptprodukt eingestellt hat, sondern die Produktion unterschiedlicher Metaboliten auf der Substratebene reguliert wird, hat Konsequenzen. Das bisherige Vorgehen, Gensequenzen aus Umweltproben in ein gut handhabbares Labor-Bakterium einzupflanzen, kann dazu führen, dass komplett artifizielle Produkte entstehen. Es ist entscheidend, den Substrat-Pool zu kennen, um beurteilen zu können, was am Ende herauskommt.

    Originalveröffentlichung:
    Sina Rütschlin, Sandra Gunesch, and Thomas Böttcher: One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool. Cell Chemical Biology (2017).
    DOI: http://doi.org/10.1016/j.chembiol.2017.03.017

    Faktenübersicht:
    • Förderung durch das Emmy Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) sowie das Zukunftskolleg der Universität Konstanz.
    • Entdeckung des Schwarminhibitors Avaroferrin: T. Böttcher, J. Clardy: Angewandte Chemie Int. Ed., 53, 3510 (2014).

    Hinweis an die Redaktionen:
    Ein Foto von Dr. Thomas Böttcher kann im Folgenden heruntergeladen werden:
    https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Thomas%20B%C3%B6ttcher....

    Kontakt:
    Universität Konstanz
    Kommunikation und Marketing
    Telefon: + 49 7531 88-3603
    E-Mail: kum@uni-konstanz.de

    - uni.kn


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).