idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.08.2017 10:37

Ein Quantenlineal für Biomoleküle

Stephan Brodicky Öffentlichkeitsarbeit
Universität Wien

    PhysikerInnen messen physikalische Eigenschaften von Vitaminen

    In der Quantenphysik breiten sich unbeobachtete Teilchen wie ausgedehnte Wellen im Raum aus. Dieses Phänomen ist philosophisch spannend und von technologischer Relevanz: Ein Forschungsteam der Universität Wien um Markus Arndt konnte an einer Reihe von Vitaminen zeigen, dass die Kombination von experimenteller Quanteninterferometrie und Quantenchemie erlaubt, Informationen über die optischen und elektronischen Eigenschaften von Biomolekülen zu gewinnen – mittels eines "Quantenlineals". Die Ergebnisse wurden im renommierten Journal "Angewandte Chemie International Edition" publiziert.

    Obwohl Vitamine eine zentrale Rolle in der Biologie spielen, sind ihre physikalischen Eigenschaften in der Gasphase noch wenig untersucht. Lukas Mairhofer, Sandra Eibenberger und KollegInnen in der Forschungsgruppe um Markus Arndt zeigen das Potenzial quantenbasierter Methoden zur Untersuchung von Biomolekülen. Sie erzeugten dafür Molekülstrahlen aus den (Pro)Vitaminen A, E und K1 – also β-Carotin, α-Tocopherol und Phyllochinon. Diese Moleküle fliegen im Hochvakuum durch eine Anordnung von drei Nanogittern. Das erste Gitter zwingt jedes Molekül durch einen von tausenden Spalten, die nur 110 Nanometer breit sind. Die Einengung der Position des Moleküls sorgt nach Heisenbergs Unschärferelation für eine große Unbestimmtheit seiner Ausbreitungsrichtung – das Molekül wird räumlich "delokalisiert". Der Bewegungszustand jedes einzelnen Moleküls wird so präpariert, dass es prinzipiell nicht mehr möglich ist, seinen Weg durch das Experiment zu verfolgen.

    Das zweite Gitter ist der Strahl eines grünen Hochleistungslasers, der von einem Spiegel in sich selbst reflektiert wird. Dadurch bildet sich eine stehende Lichtwelle, bei der sich periodisch Regionen hoher Lichtintensität mit Dunkelheit abwechseln. Jedes Molekül ist am zweiten Gitter schon so weit delokalisiert, dass seine Wellenfunktion mehrere Hell- und Dunkelzonen überstreicht, obwohl diese hundert Mal weiter auseinanderliegen als das Molekül groß ist. In den Zonen mit mehr und weniger Licht wird das Molekül mehr oder weniger abgelenkt und die ausgedehnte quantenmechanische Wellenfront wird moduliert. Da das Molekül nicht nur einen Pfad nimmt, sondern in einer Überlagerung von möglichen Wegen durch die Apparatur läuft, entsteht ein Interferenzmuster, d.h. eine periodische Verteilung der Wahrscheinlichkeit, das Molekül an einem bestimmten Ort anzutreffen. Dieses wird mit dem dritten Gitter verglichen, das wie das erste aus Silizium-Nitrid gefertigt ist.

    Quanten-Lineal für Biomoleküle
    Die ultra-feine Struktur des Interferenzmusters wird als eine Art Quantenlineal verwendet, das es erlaubt, winzige Ablenkungen von wenigen Nanometern auszulesen. Die Modulation und Position des Interferenzmusters lässt Schlüsse auf die Wechselwirkung der Biomoleküle mit äußeren Feldern zu. Das gilt für die Wechselwirkung sowohl mit dem beugenden Laserstrahl als auch mit einem kontrollierten elektrischen Feld, welches das molekulare Dichtemuster verschiebt. Die WissenschafterInnen nutzen das Quantenlineal zur Bestimmung elektronischer und optischer Eigenschaften biologisch relevanter Moleküle der (Pro)Vitamine A, E und K1. Pro-Vitamin A spielt beispielsweise eine wichtige Rolle in der Photosynthese. "Wir haben hiermit ein universelles Werkzeug, das uns hilft, die Eigenschaften von Biomolekülen besser zu vermessen", so der Erstautor der Studie, Lukas Mairhofer.

    Vergleich mit Molekülsimulationen
    Die experimentellen Ergebnisse wurden mit Berechnungen elektronischer Moleküleigenschaften verglichen. Dafür wurde klassische Moleküldynamik, in der die zeitliche Entwicklung der Molekülstruktur verfolgt wird, mit Dichtefunktionaltheorie kombiniert, in der die elektronischen Eigenschaften berechnet werden. Dieses Vorgehen ergibt eine gute Übereinstimmung von Experiment und Theorie. Die Kombination von Molekülinterferometrie und Quantenchemie ist somit ein gutes Beispiel für die erfolgreiche Zusammenarbeit an der Schnittstelle zwischen Quantenoptik und Physikalischer Chemie.

    Publikation in "Angewandte Chemie International Edition":
    Lukas Mairhofer, Sandra Eibenberger, Joseph P. Cotter, Marion Romirer, Armin Shayeghi, und Markus Arndt: "Quantum-assisted metrology of neutral vitamins in the gas-phase", Angew. Chem. Int. Ed. 2017, 56 (2017);
    DOI: 10.1002/anie.201704916

    Das Projekt wurde gefördert vom
    • European Research Council FP 7 Ideas im Adv. Grant: PROBIOTIQUS No 320694
    • FWF Doctoral Program Complex Quantum Systems W12-03-N25

    Zur animierten Version des Experiments:
    http://www.quantumnano.at/popular-science/

    Sie können Teile des Experiments auch online selber nachspielen:
    http://www.quantumnano.at/popular-science/quantum-games-training/

    Wissenschaftliche Kontakte
    Dr. Lukas Mairhofer (Erstautor)
    Quantennanophysik, VCQ
    Fakultät für Physik, Universität Wien
    Boltzmanngasse 5, 1090 Wien
    M +43 650 4545262
    lukas.mairhofer@univie.ac.at
    http://www.quantumnano.at

    Univ. Prof. Dr. Markus Arndt (Projektleiter)
    Quantennanophysik, VCQ
    Fakultät für Physik, Universität Wien
    Boltzmanngasse 5, 1090 Wien
    M +43-664-60277-512 10
    markus.arndt@univie.ac.at
    http://www.quantumnano.at

    Rückfragehinweis
    Mag. Alexandra Frey
    Pressebüro der Universität Wien
    Forschung und Lehre
    1010 Wien, Universitätsring 1
    T +43-1-4277-175 33
    M +43-664-602 77-175 33
    alexandra.frey@univie.ac.at

    Offen für Neues.
    Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.600 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at


    Weitere Informationen:

    https://www.researchgate.net/publication/317502032_Quantum-Assisted_Metrology_of... Publikation in "Angewandte Chemie"


    Bilder

    Das Experiment hebt hervor, dass natürlich vorkommende Vitamine in spezifischen Quantenzuständen präpariert werden können, die dann die Messung molekularer elektronischer Eigenschaften erleichtern.
    Das Experiment hebt hervor, dass natürlich vorkommende Vitamine in spezifischen Quantenzuständen prä ...
    Copyright: Christian Knobloch, QNP Group, Fakultät für Physik der Universität Wien
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Chemie, Ernährung / Gesundheit / Pflege, Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Das Experiment hebt hervor, dass natürlich vorkommende Vitamine in spezifischen Quantenzuständen präpariert werden können, die dann die Messung molekularer elektronischer Eigenschaften erleichtern.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).