idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.09.2017 14:45

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

Dr. Christiane Menzfeld Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

    Treibhausgase wie Kohlendioxid reichern sich in der Atmosphäre an und beschleunigen die globale Erwärmung. Pflanzen und Algen filtern Kohlendioxid aus der Luft und ersetzen ihn durch Sauerstoff. Im Gegensatz zu den meisten Pflanzen läuft dieser Prozess, die Photosynthese, in Algen effizienter ab. Sie besitzen ein Mikrokompartiment, das sie mit Kohlendioxid fluten. Das Rätsel dessen Struktur haben nun ein Team von Wissenschaftlern der Universität Princeton, der Carnegie Institution for Science, der Universität Stanford und des Max-Planck-Instituts für Biochemie gelöst. In Zukunft könnte man mit diesen Erkenntnissen Pflanzen so verändern, dass sie der Atmosphäre mehr Kohlendioxid entziehen.

    Unser Planet erwärmt sich
    Das Klima unseres Planeten ist dabei sich zu verändern. Jedes Jahr werden Hitzerekorde gebrochen, die extreme Wetterlagen, schmelzendes Polareis und steigende Meeresspiegel zur Folge haben. Verstärkt wird die globale Erwärmung durch Treibhausgase wie Kohlendioxid, die verhindern, dass Wärme aus der Atmosphäre entweichen kann. Pflanzen und Algen wirken als natürliche Luftfilter diesem Effekt entgegen: In einem als Photosynthese bezeichneten Prozess nutzen sie die Energie der Sonne, um der Atmosphäre Kohlendioxid zu entziehen. Dabei erzeugen sie Sauerstoff, den wir einatmen. Das wichtigste Protein in diesem Prozess ist Rubisco, das Kohlendioxid bindet. Etwa die Hälfte der auf der Erde stattfindenden Photosynthese erfolgt durch einzellige Algen im Ozean. Viele dieser Algen binden Kohlendioxid effizienter als Landpflanzen, indem sie Kohlendioxid in einem Mikrokompartiment, dem Pyrenoid, konzentrieren. Bis vor kurzem war nicht bekannt, wie dieses Mikrokompartiment aufgebaut ist.

    Jedes Rubisco im Pyrenoid sichtbar machen
    Ein erster Durchbruch gelang dem Team von Martin Jonikas, Leiter der Arbeitsgruppen in Carnegie/Stanford und Princeton. Sie identifizierten ein Linkerprotein in der Grünalge Chlamydomonas, das Rubisco-Enzyme innerhalb des Pyrenoids aneinanderbindet. Ohne diesen „molekularen Klebstoff“ kommt es nicht zur Entstehung des Pyrenoids. Bisher war jedoch nicht bekannt, wie die Rubisco-Proteine in dem Pyrenoid organisiert sind. Lange dachten die Forscher, dass es sich dabei um einen Festkörperkristall höherer Ordnung handeln könnte.

    Um dieser Frage nachzugehen, untersuchten Wissenschaftler um Benjamin Engel am Max-Planck-Institut für Biochemie die molekulare Organisation des Pyrenoids in Chlamydomonas-Zellen mittels Kryoelektronentomographie. Im Gegensatz zur klassischen Elektronenmikroskopie, werden bei dieser Technik durch rasches Einfrieren Artefakte vermieden und die Zelle in ihrem nativen Zustand gehalten. Mit Hilfe dieses hochauflösenden Bildgebungsverfahrens konnten Engel und seine Kollegen genau messen, an welchen Positionen in dem Pyrenoid sich die vielen Tausenden von Rubisco-Enzymen befinden. Sie stellten fest, dass das Pyrenoid keine kristalline Struktur aufweist: „Vergleicht man unsere Messungen mit der Organisation von Molekülen in Flüssigkeiten finden sich deutliche Ähnlichkeiten. Das deutet darauf hin, dass Pyrenoide in Wirklichkeit flüssigkeitsartige Strukturen sind“, erklärt Engel das Ergebnis.

    Wie Öl und Wasser
    Um zu belegen, dass sich das Pyrenoid wie eine Flüssigkeit verhält, führte Elizabeth Freeman Rosenzweig, Erstautorin der Studie, fluoreszenzspektroskopische Messungen der Bewegung von Rubisco innerhalb lebender Zellen durch. Mit Hilfe eines Hochleistungslasers löschte sie das Signal der an Rubisco gebundenen fluoreszierenden Markierung in einer Hälfte des Pyrenoids, während die Markierung in der anderen Hälfte erhalten blieb. Innerhalb von Minuten breitete sich die Fluoreszenz wieder im gesameten Pyrenoid aus. Die Enzyme konnten sich wie in einer Flüssigkeit hin und her bewegen. Bei dem Pyrenoid handelt es sich also um ein flüssiges Mikrokompartiment, das in einem zweiten großen Flüssigkeitskompartiment, dem Chloroplasten, schwimmt. Dies ist ein Beispiel für eine „Phasentrennung“, ein physikalisches Phänomen, das, wie kürzlich nachgewiesen wurde, eine Rolle bei der Kompartimentbildung vieler Zellproteine spielt. Freeman Rosenzweig erläutert dieses Prinzip anhand einer Analogie: „Zwar sind bei der Phasentrennung des Pyrenoids andere Kräfte am Werk, der Vorgang lässt sich aber anhand eines vertrauten Bildes gut veranschaulichen: Stellen Sie sich vor, sie bekommen Essig und Öl in einem italienischen Restaurant. Beides sind Flüssigkeiten, aber sie vermischen sich nicht. Der Essig bildet stattdessen Tröpfchen, die in dem Öl schwimmen. Genauso bildet unserer Ansicht nach das Pyrenoid ein Tröpfchen innerhalb der flüssigen Umgebung des Chloroplasten.“

    Freeman Rosenzweig entdeckte zudem, dass sich zu einem speziellen Zeitpunkt das „Öl” des Chloroplasten-Stromas und der „Essig“ des Pyrenoids doch mischen. Teilen sich einzellige Algen in zwei Tochterzellen, durchläuft das Pyrenoid einen „Phasenübergang”, bei dem es sich teilweise in das ihn umgebende Stroma des Chloroplasten auflöst. Für gewöhnlich wird das verbleibende Pyrenoid zweigeteilt, wobei jede Tochterzelle eine Hälfte aufnimmt. Zuweilen schlägt diese Teilung jedoch fehl und eine der Tochterzellen geht leer aus. Die Forscher beobachteten, dass Zellen, auf die kein Pyrenoid übergeht, dieses dennoch spontan bzw. „de novo“ herstellen können. Sie vermuten, dass jede Tochterzelle einen Teil der gelösten Pyrenoidkomponenten aufnimmt und sich diese in ähnlicher Weise zu einem neuen Pyrenoid zusammenschließen können – wie Regentropfen aus Wasserdampf kondensieren. „Wir denken, dass die Auflösung des Pyrenoids vor und seine Kondensation nach der Zellteilung einen redundanten Mechanismus darstellen könnten, der gewährleistet, dass beide Tochterzellen Pyrenoide aufnehmen“, meint Jonikas. „Auf diese Weise verfügen beide Zellen über diese wichtige Organelle, die für die Kohlenstoffaufnahme entscheidend ist.“

    Optimierte Kulturpflanzen für eine sich verändernde Welt
    Jonikas und seine Arbeitsgruppe haben große Pläne für die Anwendungsmöglichkeiten dieser Erkenntnisse. Sie möchten Pyrenoide auf technischem Wege in Feldfrüchte wie Weizen und Reis einbringen, um so der Klimaveränderung und dem Hunger auf der Welt entgegenzutreten. „Zu verstehen, wie Algen Kohlendioxid konzentrieren können, ist ein wichtiger Schritt hin zu unserem Ziel, die Photosynthese bei anderen Pflanzen zu verbessern“, so Jonikas. „Wenn wir andere Kulturpflanzen technisch so verändern könnten, Kohlenstoff zu konzentrieren, wäre dies eine Möglichkeit, dem weltweit wachsenden Bedarf an Nahrungsmitteln zu begegnen.“ Jonikas‘ Arbeitsgruppe hat sogar ihr eigenes Maskottchen kreiert – Sammy the Chlamy – das in einem Musikvideo über das große Potential des Pyrenoids aufklärt:
    https://www.youtube.com/watch?v=B2ftWvnBanY

    Teile dieser Pressemitteilung wurden mit freundlicher Genehmigung der Kommunikationsabteilung der Princeton University übernommen. Das Musikvideo wurde von Jonathan Mann produziert.
    [SiM]

    Originalpublikation
    E.S. Freeman Rosenzweig, B. Xu, L. Kuhn Cuellar, A. Martinez-Sanchez, M. Schaffer, M. Strauss, H.N. Cartwright, P. Ronceray, J.M. Plitzko, F. Förster, N.S. Wingreen, B.D. Engel, L.C.M. Mackinder & M.C. Jonikas. “The Eukaryotic CO2-Concentrating Organelle is Liquid-Like and Exhibits Dynamic Reorganization”. Cell, September 2017
    DOI: 10.1016/j.cell.2017.08.008

    ---
    Über Benjamin Engel
    Benjamin Engel untersucht die molekulare Architektur von Organellen, darunter das Chloroplast. Mit seinem Team visualisiert er makromolekulare Komplexe in ihrem nativen Zellzusammenhang, die er mittels Kryoelektronentomographie hochauflösend darstellen kann. Engel studierte Molekulare und Zellbiologie an der University of California, Berkeley, in den Vereinigten Staaten. Er promovierte an der University of California, San Francisco. Seit 2011 arbeitet er als PostDoc in der Abteilung „Molekulare Strukturbiologie” von Wolfgang Baumeister am Max-Planck-Institut für Biochemie in Martinsried bei München. Er erhielt das Humboldt-Forschungsstipendium für Postdoktoranden und den MPIB Junior Research Award.

    Über das Max-Planck-Institut für Biochemie
    Das Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München zählt zu den führenden internationalen Forschungseinrichtungen auf den Gebieten der Biochemie, Zell- und Strukturbiologie sowie der biomedizinischen Forschung und ist mit rund 35 wissenschaftlichen Abteilungen und Forschungsgruppen und ungefähr 800 Mitarbeitern eines der größten Institute der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Das MPIB befindet sich auf dem Life-Science-Campus Martinsried in direkter Nachbarschaft zu dem Max-Planck-Institut für Neurobiologie, Instituten der Ludwig-Maximilians-Universität München und dem Innovations- und Gründerzentrum Biotechnologie (IZB). (http://biochem.mpg.de)

    Über Martin Jonikas
    Martin Jonikas arbeitet als Assistenzprofessor an der Princeton University. In seinem Labor untersucht er photosynthetisch aktive Eukaryoten mit mordernsten Technologien. Er studierte Raumfahrttechnik am Massachusetts Institute of Technology. Während seiner Promotion an der University of California, San Francisco, arbeitete er zusammen mit Jonathan Weissman, Maya Schuldiner und Peter Walter an high-throughput genetics und der Proteinfaltung im Endoplasmatischen Retikulum. Jonikas startete sein Labor direkt nach Erlangen des Doktorgrades als Fakultätsmitglied an der Carnegie Institution for Science und als Assistenzprofessor an der Stanford University. Nach sieben Jahren in Carnegie verlagerte er sein Labor nach Princeton. Für seine Forschung wurde er mit zahlreichen Preisen ausgezeichnet, darunter der Howard Hughes Medical Institute-Simons Foundation Faculty Scholar Award im Jahr 2015, der NIH New Innovator Award im Jahr 2015 und der Air Force Young Investigator Award 2010.

    Kontakt:
    Dr. Benjamin Engel
    Abteilung Molekulare Strukturbiologie
    Max-Planck-Institut für Biochemie
    Am Klopferspitz 18
    82152 Martinsried
    Germany
    Tel. +49 89 8578-2653
    E-Mail: engelben@biochem.mpg.de
    www.biochem.mpg.de

    Dr. Christiane Menzfeld
    Öffentlichkeitsarbeit
    Max-Planck-Institut für Biochemie
    Am Klopferspitz 18
    82152 Martinsried
    Germany
    Tel. +49 89 8578-2824
    Mail: pr@biochem.mpg.de
    www.biochem.mpg.de


    Weitere Informationen:

    http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie
    http://www.biochem.mpg.de/en/rd/baumeister - Webseite der Abteilung „Molekulare Strukturbiologie“ (Wolfgang Baumeister)


    Bilder

    Die Tubulusmembranen (grün und gelb) des Pyrenoids sind umspült von einem “Meer” aus Rubiscoenzymen (blau).
    Die Tubulusmembranen (grün und gelb) des Pyrenoids sind umspült von einem “Meer” aus Rubiscoenzymen ...
    © ScienceDirect
    None

    Das Pyrenoid ist ein Mikrokompartiment innerhalb des Chloroplasten von Sammy the Chlammy, einer Grünalge der Spezies Chlamydomonas reinhardtii.
    Das Pyrenoid ist ein Mikrokompartiment innerhalb des Chloroplasten von Sammy the Chlammy, einer Grün ...
    © Krystal Klaus
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Meer / Klima, Tier / Land / Forst, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Die Tubulusmembranen (grün und gelb) des Pyrenoids sind umspült von einem “Meer” aus Rubiscoenzymen (blau).


    Zum Download

    x

    Das Pyrenoid ist ein Mikrokompartiment innerhalb des Chloroplasten von Sammy the Chlammy, einer Grünalge der Spezies Chlamydomonas reinhardtii.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).