idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.11.2017 16:34

Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein. Voraussetzung dafür ist, dass der Mond einen porösen Kern hat, sodass Wasser des darüberliegenden globalen Ozeans in den Kern eindringen kann und dort durch die Reibungswärme erhitzt wird. Das zeigt eine Computersimulation, die im Rahmen der europäisch-amerikanischen Cassini-Huygens-Mission entstanden ist. Sie bietet auch eine Antwort auf die lange ungelöste Frage, woher die Energie stammt, die die Existenz von flüssigem Wasser auf dem kleinen, kryovulkanisch aktivem Mond fern der Sonne ermöglicht.

    Pressemitteilung
    Heidelberg, 22. November 2017

    Reibungswärme treibt hydrothermale Aktivität auf Enceladus an
    Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

    Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein. Voraussetzung dafür ist, dass der Mond einen porösen Kern hat, sodass Wasser des darüberliegenden globalen Ozeans in den Kern eindringen kann und dort durch die Reibungswärme erhitzt wird. Das zeigt eine Computersimulation, die im Rahmen der europäisch-amerikanischen Cassini-Huygens-Mission entstanden ist. Sie bietet auch eine Antwort auf die lange ungelöste Frage, woher die Energie stammt, die die Existenz von flüssigem Wasser auf dem kleinen, kryovulkanisch aktivem Mond fern der Sonne ermöglicht. An den Untersuchungen war auch die Forschungsgruppe von Privatdozent Dr. Frank Postberg, Planetologe an der Universität Heidelberg, beteiligt.

    Bereits 2015 konnten die Wissenschaftler zeigen, dass es hydrothermale Aktivität auf dem Saturnmond geben muss. Aus Eisvulkanen schleudert Enceladus feinste Gesteinskörner in riesigen Fontänen aus Gas und Wassereis in den Weltraum. Diese Partikel konnten mit einem Detektor der Raumsonde Cassini erfasst werden. Sie stammen vom Grund eines über 50.000 Meter tiefen Ozeans, der sich unter einer drei bis 35 Kilometer dicken Eiskruste von Enceladus erstreckt. Mit Computersimulationen und Laborexperimenten fanden die Wissenschaftler Hinweise darauf, dass es in der Tiefe zu einer Wechselwirkung zwischen Gestein und Wasser kommt – bei Temperaturen von mindestens 90 Grad Celsius. Doch woher kommt die Energie für diese Hydrothermalsysteme, die den Transport von Materie antreiben? Und wie genau gelangen die Gesteinspartikel an die Oberfläche des Eismondes?

    Die aktuellen Untersuchungen unter Federführung der Universität Nantes (Frankreich) bieten dafür eine Erklärung. Wie Dr. Postberg erläutert, ist der Gesteinskern von Enceladus vermutlich porös. Daher kann das Wasser des darüberliegenden Ozeans tief in den Kern eindringen. Gleichzeitig wirken starke Gezeitenkräfte, die der Saturn auf seinen Mond ausübt, auf das „lose“ Gestein des Kerns ein. Die neue Computersimulation zeigt, dass dadurch Reibungswärme sehr effizient auf das durch den Kern spülende Wasser übertragen und dieses auf über 90 Grad Celsius erwärmt wird. Einige Bestandteile des Gesteinskerns werden dabei im so erhitzten Wasser gelöst. Die hydrothermalen Fluide strömen an bestimmten Punkten – den Hotspots – wieder in den Ozean. Durch die Abkühlung fallen Teile des gelösten Materials als feine Partikel aus und werden mit dem warmen Wasser an die Ozeanoberfläche transportiert. Die Hotspots liegen bevorzugt an den Polen von Enceladus.

    Die aufsteigenden hydrothermalen Fluide lösen vermutlich lokale Schmelzvorgänge in der Eisschicht der Polregion aus. Dies erklärt nach den Worten von Dr. Postberg, warum die Eisschicht an den Polen mit drei bis zehn Kilometern deutlich dünner ist als am Äquator, wo sie 35 Kilometer dick ist. „Am Südpol kann das Wasser durch Spalten sogar bis nahe an die Mondoberfläche aufsteigen. Dort werden die mikroskopisch kleinen Gesteinskörner aus dem Kern zusammen mit Eispartikeln ins All geschleudert, wo sie dann von den Instrumenten der Raumsonde Cassini erfasst werden konnten“, so der Heidelberger Planetologe. Die Untersuchung zeigt auch, dass nur mit dieser Wärmequelle im Kern der darüberliegende flüssige Ozean aufrecht gehalten werden kann. Sonst würde er in weniger als 30 Millionen Jahren komplett ausfrieren. Dr. Postberg forscht am Klaus-Tschira-Labor für Kosmochemie, das am Institut für Geowissenschaften der Universität Heidelberg angesiedelt ist und von der Klaus Tschira Stiftung gefördert wird.

    Die Cassini-Huygens-Mission wurde 1997 als gemeinsames Projekt der NASA und der ESA sowie der italienischen Raumfahrtagentur ASI mit dem Ziel gestartet, neue Erkenntnisse über den Gasplaneten Saturn und seine Monde zu gewinnen. Von 2004 an umkreiste die Raumsonde Cassini den Saturn, bis die Mission im September dieses Jahres mit dem Eintritt der Sonde in die Saturnatmosphäre endete. Die jüngsten Forschungsergebnisse wurden in der Fachzeitschrift „Nature Astronomy“ veröffentlicht.

    Originalpublikation:
    G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg & O. Souček: Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy (published online 6 November 2017), doi: 10.1038/s41550-017-0289-8

    Kontakt:
    Privatdozent Dr. Frank Postberg
    Institut für Geowissenschaften
    Klaus-Tschira-Labor für Kosmochemie
    Tel. +49 6221 54-8209
    frank.postberg@geow.uni-heidelberg.de

    Kommunikation und Marketing
    Pressestelle
    Tel. +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Weitere Informationen:

    http://www.geow.uni-heidelberg.de/researchgroups/postberg/


    Bilder

    Oberfläche, Ozean und Kern des Saturnmondes Enceladus. Eine Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt.
    Oberfläche, Ozean und Kern des Saturnmondes Enceladus. Eine Computersimulation zeigt, wie der Eismon ...
    Quelle: Oberfläche – NASA/JPL-Caltech/Space Science Institute; Kern – Choblet et al (2017); Komposition der Grafik – ESA
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Geowissenschaften, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Oberfläche, Ozean und Kern des Saturnmondes Enceladus. Eine Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).