idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.11.2017 13:09

Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt

Isabella Milch Öffentlichkeitsarbeit
Max-Planck-Institut für Plasmaphysik

    Förderung für weitere fünf Jahre / Plasmen in Astrophysik und Fusionsforschung untersuchen

    Mit Bestnote hat das „Max-Planck-Princeton Center for Plasma Physics“, das 2012 von der Max-Planck-Gesellschaft und der US-amerikanischen Princeton-Universität gegründet wurde, die Evaluierung seiner wissenschaftlichen Arbeit bestanden. Jetzt beschloss die Max-Planck-Gesellschaft die Förderung mit jährlich 250.000 Euro für weitere zwei bis maximal fünf Jahre. Ziel des Zentrums ist es, die bislang wenig koordinierten Forschungen zu Fusions-, Labor- und Weltraumplasmen zu verbinden und Synergien nutzbar zu machen.

    Partner des Zentrums sind auf Seite der Fusionsforschung das Max-Planck-Institut für Plasmaphysik in Garching und Greifswald (IPP) sowie das Princeton Plasma Physics Laboratory (PPPL) in den USA. Astrophysikalische Plasmen werden in den Max-Planck-Instituten für Sonnensystemforschung in Göttingen sowie Astrophysik in Garching und in der Fakultät für Astrophysik der Universität Princeton untersucht. Vor allem durch den Austausch von Wissenschaftlern, insbesondere Nachwuchswissenschaftlern, wurden in den vergangenen fünf Jahren gemeinsam Computercodes entwickelt oder an den Anlagen MRX in Princeton, Vineta in Greifswald und ASDEX Upgrade in Garching experimentiert. „Zur Evaluierung konnte das Zentrum insgesamt 150 Publikationen vorweisen, die beträchtliche Fortschritte in wesentlichen Feldern der Plasma- und Astrophysik markieren“, sagt Professor Per Helander, Leiter des IPP-Bereichs Stellaratortheorie und neben Professor Amitava Bhattacharjee vom PPPL seit 2017 Stellvertretender Direktor des Max-Planck-Princeton Center.

    So kann jetzt bei der alten astrophysikalischen Frage, warum der Sonnenwind viel heißer ist als die Sonnenoberfläche, ein Computercode helfen, der zur Beschreibung der Turbulenz in Fusionsplasmen entwickelt wurde. Damit konnten Plasmatheoretiker des IPP zusammen mit amerikanischen Kollegen den Heizmechanismus im Sonnenwind-Plasma detailliert untersuchen – mit bislang unerreichter Genauigkeit – und mit Raumsonden-Messungen vergleichen.

    Ein weiteres Rätsel, dessen Lösung man im Max-Planck-Princeton Center nähergekommen ist: Warum läuft in Weltraum und Labor die magnetische Rekonnektion, also das Aufbrechen und neue Verbinden magnetischer Feldlinien, viel schneller als die Theorie erwarten lässt? Ob Sonnenkorona oder Fusionsplasma – mit der Umordnung der Feldlinien ist stets die rasche Umwandlung von magnetischer Energie in Wärme- und Bewegungsenergie der Plasmateilchen verbunden. Physiker des Max-Planck-Instituts für Sonnensystemforschung und der Universität Princeton haben hierfür einen schnellen Mechanismus beschrieben, der die Beobachtungen in der Sonnenkorona erklären könnte: die Ausbildung instabiler Plasmoide. Auch die sogenannte Sägezahn-Instabilität in Fusionsplasmen – das wiederholte Ausschleudern von Teilchen aus dem Plasmazentrum – beruht auf blitzschneller Rekonnektion der Magnetfeldlinien. Im Rahmen der Max-Planck-Princeton-Kooperation ist IPP-Wissenschaftlern nun erstmals eine realistische Simulation gelungen, die die rasante Geschwindigkeit erklären kann.

    Nicht zuletzt hat ein neuer Theorie-Ansatz zur Berechnung magnetischer Gleichgewichte, der zunächst in Princeton entwickelt wurde, zu einem sehr schnellen Computercode geführt. In der Max-Planck-Princeton-Kooperation wurde er zusammen mit dem IPP in Greifswald weiterentwickelt. Mit dem neuen Algorithmus dauern Gleichgewichtsrechnungen für die komplexen Magnetfelder künftiger Stellarator-Fusionsanlagen nun nicht mehr Monate, sondern nur noch wenige Minuten.

    „Wie erhofft, hat das Center neue Kooperationen geschaffen und tragfähige Brücken geschlagen, einerseits zwischen der Erforschung von Plasmen in Fusionsanlagen, im Labor und im Weltraum sowie andererseits zwischen amerikanischen und deutschen Plasmaphysikern“, fasst Professor Sibylle Günter, die Wissenschaftliche Direktorin des IPP, die vergangenen fünf Jahre Max-Planck-Princeton Center zusammen. Gemeinsam mit Professor Stewart Prager vom PPPL ist sie eine der beiden Co-Direktoren des Zentrums. Die erfolgreiche Zusammenarbeit hat inzwischen weitere Partner angezogen: Anfang Juli 2017 wurde ein Memorandum of Understanding zum Beitritt der japanischen National Institutes of Natural Sciences unterzeichnet: „Wir freuen uns sehr auf die nächsten Jahre gemeinsamer Forschung“, so Sibylle Günter, „die mit der jetzigen Bestätigung durch die Max-Planck-Gesellschaft möglich werden“.


    Weitere Informationen:

    http://www.ipp.mpg.de/de/aktuelles/presse/pi/2017/10_17


    Bilder

    Turbulenz im Sonnenwindplasma. Die Simulation zeigt die von der Turbulenz hervorgerufenen Magnetfeld-Schwankungen.
    Turbulenz im Sonnenwindplasma. Die Simulation zeigt die von der Turbulenz hervorgerufenen Magnetfeld ...
    Grafik: IPP, Daniel Told
    None

    Vineta-II, eine der Forschungsanlagen, die dem Max-Planck-Princeton Center zur Verfügung stehen. Das Plasmaexperiment im IPP in Greifswald untersucht die Vorgänge bei magnetischer Rekonnektion.
    Vineta-II, eine der Forschungsanlagen, die dem Max-Planck-Princeton Center zur Verfügung stehen. Das ...
    Grafik: IPP
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Elektrotechnik, Energie, Maschinenbau, Physik / Astronomie
    überregional
    Forschungsergebnisse, Kooperationen
    Deutsch


     

    Turbulenz im Sonnenwindplasma. Die Simulation zeigt die von der Turbulenz hervorgerufenen Magnetfeld-Schwankungen.


    Zum Download

    x

    Vineta-II, eine der Forschungsanlagen, die dem Max-Planck-Princeton Center zur Verfügung stehen. Das Plasmaexperiment im IPP in Greifswald untersucht die Vorgänge bei magnetischer Rekonnektion.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).