idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.12.2017 10:00

Climate change: Self-enhancing effect cannot be explained by soil animals

Tabea Turrini Presse- und Öffentlichkeitsarbeit
Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

    Leipzig. When the soil warms up, it releases more carbon dioxide (CO2) – an effect that further fuels climate change. Until now, it had been assumed that the reason for this was mainly due to the presence of small soil animals and microorganisms that would eat and breathe more in warmer temperatures. However, a new study in Nature Climate Change has shown that this is not the case. Quite the contrary: If warmth is accompanied by drought, the soil animals eat even less. In order to improve the predictive power of climate models, it is now crucial to understand the biological processes in the soil better, say the scientists.

    The fact that the world's climate is changing is mainly due to the burning of fossil fuel. As a consequence, large quantities of carbon dioxide (CO2) are released into the Earth's atmosphere. However, additionally, climate change is also being intensified on its own, because global warming is also causing the natural carbon cycle to change. Although on Earth, carbon is constantly converted from solid compounds into gaseous CO2 and vice versa, warmer temperatures can further enhance carbon losses in form of CO2 from the soil. As a result, more CO2 is introduced into the Earth's atmosphere: a positive feedback.

    Scientists had previously assumed that this effect was mainly due to the presence of small animals and microorganisms in the soil, which feed on dead organic matter (for example, fallen leaves). Because when they ‘burn’ their food, CO2 is released (‘respiration’). It was assumed that at warmer temperatures, insects and worms with decomposing roles would eat more, and the dead organic matter in the soil would be decomposed at faster rates. After all, these animals are poikilotherms whose body temperature and activity depend on the environment. Bacteria and unicellular fungi in the soil should also be more active at warmer temperatures, based on the current understanding. But now a new study questions this assumption. A team of researchers led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University carried out an experiment to simulate the warming of the soil in the forest and found out surprisingly: The warmer temperatures have no influence on the feeding activity of the soil animals. When the researchers simulated a second effect of climate change in addition to warming, namely drought, the results were even the opposite as expected: The soil animals ate less, and also the microorganisms living in the soil showed a decline in respiration – an indication that they also consumed less food.

    Dr Madhav P. Thakur, first author of the study, explains why these results are of great relevance: “The feedback effect of climate warming via the greater release of CO2 from the soil is a crucial assumption in models predicting our future climate. Therefore, it is important to know what it causing this effect. Our results indicate that it may not be the soil animals, on the contrary: Their role may actually be the opposite of what we expected, at least when warming and drought occur together”. According to Professor Nico Eisenhauer, the senior author of the study: “It is most likely that instead of soil animals and microorganisms, the plants are responsible for the feedback effect because they also breathe with their roots. In order to improve the validity of climate models, we now urgently need to understand the biological processes in the soil better.” After all, soil is the major reservoir of carbon on earth, the scientist says.

    The study was conducted as part of a long-term climate change experiment in Minnesota, USA. In the ‘B4WarmED’ (Boreal Forest Warming at an Ecotone in Danger) experiment, scientists are heating various plots of boreal forest land artificially by 3.4°C. In addition, they also reduce rainfall by 40% in some places by setting up tents in rainy weather. The scientists measured how much the soil animals ate using ‘bait lamina strips’: small sticks with holes in which the researchers filled substrate that resembled the organic matter in the soil. These sticks were stuck deep into the ground. Every two weeks the scientists checked how much of the substrate was eaten. The researchers carried out more than 40 such measurements over a period of four years. It is the first study of this scale to investigate the effects of global warming and drought on decomposer soil animals. In addition, the researchers checked the respiration of soil microorganisms by excluding plant roots with a metal ring in small soil areas and then measuring how much CO2 was released from the soil with a gas analyser. Tabea Turrini

    Original publication:
    Madhav P. Thakur, Peter B. Reich, Sarah E. Hobbie, Artur Stefanski, Roy Rich, Karen E. Rice, William C. Eddy, Nico Eisenhauer (2017): Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change. doi:10.1038/s41558-017-0032-6


    Funding:
    Deutsche Forschungsgemeinschaft in the frame of the Emmy Noether research group (Ei 862/2), European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 677232), German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, funded by the German Research Foundation (FZT 118), B4WarmED project: US Department of Energy (Grant number DE-FG02-07ER64456) and College of Food, Agricultural and Natural Resource Sciences at the University of Minnesota


    Contact
    Dr Madhav P. Thakur
    Postdoctoral researcher at the Department Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv),
    Leipzig University
    phone: Mobile number availalbe from iDiv Media and Communications.
    E-mail: madhav.thakur@idiv.de
    web: https://www.idiv.de/en/groups_and_people/employees/details/eshow/thakur_madhav_p...


    Prof Nico Eisenhauer
    Head of the Department Experimental Interaction Ecology, German Centre of Integrative Biodiversity Research (iDiv),
    Leipzig University
    phone: +49 341 9733167
    E-mail: nico.eisenhauer@idiv.de
    web: https://www.idiv.de/en/groups_and_people/employees/details/eshow/eisenhauer_nico...


    Dr Volker Hahn
    Media and Communications
    German Centre for Integrative Biodiversity Research (iDiv)
    phone: +49 341 9733154
    E-mail: volker.hahn@idiv.de
    web: https://www.idiv.de/groups_and_people/employees/details/eshow/hahn-volker.html


    Bilder

    Woodlice (isopods) are important detrivores in the soil.
    Woodlice (isopods) are important detrivores in the soil.
    Sarah Zieger
    None

    The scientists used so-called bait lamina strips to measure how much the soil animals were eating.
    The scientists used so-called bait lamina strips to measure how much the soil animals were eating.
    Julia Siebert
    None


    Anhang
    attachment icon With these heating elements the scientists warmed up the soil in the forests.

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Geowissenschaften, Meer / Klima, Tier / Land / Forst, Umwelt / Ökologie
    überregional
    Forschungsergebnisse
    Englisch


     

    Woodlice (isopods) are important detrivores in the soil.


    Zum Download

    x

    The scientists used so-called bait lamina strips to measure how much the soil animals were eating.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).