idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
12.01.2018 11:10

Species identification in the water bottle

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Environmental DNA analysis makes it possible to detect water organisms without having to capture them first. For the first time, a team at the Technical University of Munich (TUM) systematically investigated the effect of various environmental factors on environmental DNA analyses. By doing so, the researchers have made an important step towards the standardized application of this method for the monitoring of water bodies.

    DNA that animals release into aquatic environment can be detected using molecular analysis. This detection method is called environmental DNA (eDNA) A simple water sample is sufficient for this technique. However, this method does not work equally well in all water bodies and is therefore very likely to be influenced by the respective conditions in each body of water. This may include organic and inorganic components in the water or the flow conditions. So far, there is almost no research on how strongly the individual factors affect the analysis procedure.

    Dr. Bernhard Stoeckle and Dr. Sebastian Beggel, researchers at the Chair of Aquatic Systems Biology and the Unit of Molecular Zoology (Chair of Zoology) at TUM investigated the influence of a wide range of environmental factors on eDNA analysis in an experiment. The idea for the experiment was based on a previous eDNA study on a native mussel species.

    Systematic experimental structure

    In a systematic laboratory setup, fish belonging to an invasive species — the round goby (Neogobius melanostomus) — were kept in aquaria in varying densities, under various flow conditions, with and without sediment, and were removed from the water after a defined period of time.

    Subsequently, the researchers took water samples at regular intervals over a period of six days in order to be able to evaluate the efficiency of the eDNA analysis over time as well. In addition, the researchers added several substances, which could potentially hinder molecular analysis such as algae, humic substances, and inorganic suspended particles to the water, which are also found in natural ecosystems.

    “That’s particularly important, otherwise we wouldn’t be able to apply the findings to eDNA studies in the field,” Bernhard Stoeckle explained. In order to find out which factors have the greatest influence, the researchers then compared the eDNA results of all water samples with each other.

    Extent of influence of factors changes over time

    On the one hand, the evaluation of the experiment showed that, over its entire duration, the flow conditions, the existence or absence of sediment, and the fish density only had an effect on the analyses in combination with each other. On the other hand, it turned out that the extent of the influence of the factors changed greatly over time.

    Of the inhibitors added, organic substances (humic substances) interfered with the analyses the most. They often entirely precluded the successful application of the method. DNA could only be detected in 41 percent of the samples examined. Algae also had a comparable effect, albeit less pronounced. “Our findings clearly demonstrate how important it is that environmental conditions are also taken into account when performing eDNA analyses in order to be able to correctly interpret the findings,” said Bernhard Stoeckle.

    Based on the results of the experiment, it can be concluded that specific environmental conditions interfere greatly with environmental DNA experiments, in some cases making it difficult or even impossible to detect species.

    Pictures for editorial coverage

    Publication:
    Stoeckle, BC., Beggel, S., Cerwenka, AF., Motivans, E., Kuehn, R., Geist, J.: A systematic approach to evaluate the influence of environmental conditions on eDNA detection success in aquatic ecosystems, PLoS One 12/2017.
    DOI: 10.1371/journal.pone.0189119.

    Contact:
    Prof. Dr. Jürgen Geist
    Technical University of Munich
    Chair of Aquatic Systems Biology
    Phone: +49/8161/71-3974
    Mail: geist@wzw.tum.de
    http://fisch.wzw.tum.de


    Weitere Informationen:

    https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34398/ article
    https://mediatum.ub.tum.de/1427106?id=1427106 pictures


    Bilder

    Environmental DNA analysis makes it possible to detect aquatic organisms without having to catch them: Bernhard Stoeckle (right) fetches a water bottle with liquid from a stream.
    Environmental DNA analysis makes it possible to detect aquatic organisms without having to catch the ...
    Photo: A. Heddergott/ TUM
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Biologie, Chemie, Tier / Land / Forst, Umwelt / Ökologie
    überregional
    Buntes aus der Wissenschaft, Forschungsergebnisse
    Englisch


     

    Environmental DNA analysis makes it possible to detect aquatic organisms without having to catch them: Bernhard Stoeckle (right) fetches a water bottle with liquid from a stream.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).