idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.07.2018 12:33

Research team reconstructs motor-cargo complex for ciliary transport: How to start a nanomotor?

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Most people have never heard of them, and yet every living being needs them to survive: fine protrusions of cells known as cilia. They allow sperm to move, form fine protective hairs in the lungs and play a crucial role in the differentiation of organs in embryos. A research team at the Technical University of Munich (TUM) has now reconstructed the protein complex responsible for transport within cilia, which plays a decisive role in their functioning.

    Flagellates need them to move, roundworms to find food, and sperm to move towards the egg: cilia. These excrescences of eukaryotic cells even ensure that the human heart ends up in the right place – cilia control the organ development of the growing fetus. "This Multifunctionality is absolutely fascinating," says Dr. Zeynep Ökten, biophysicist in the Physics Department of the Technical University of Munich.

    Only in recent years the significance of cilia for signal transduction has been recognized. "To date, we know very little about which biochemical processes control the various functions. This makes understanding the basic mechanisms even more important,” emphasizes the scientist.

    Green dots in the focus

    The scientist holds a glass plate with thin, liquid-filled capillaries up to the light. There is not much to see – merely a clear and transparent liquid. Only under a fluorescence microscope does the movement of compounds marked with dye become visible: green dots, all striving in one direction.

    As if on a highway, the transport proteins migrate along the thin channels of the cilia. But just how these engines are started up, remained a mystery until now. That is why Zeynep Ökten and her team decided to reconstruct the protein complex.

    Bottom-up instead of top-down

    The building blocks of the protein complex stem from the model organism of the Caenorhabditis elegans nematode. It uses its cilia to find food and detect hazards. The biologists have already identified dozens of proteins that affect the function of nematode cilia.

    "Here, the classical top-down approach reaches its limits because too many building blocks are involved," explains Ökten. "To understand the intra-flagellar transport, IFT for short, we thus took the opposite approach, studying individual proteins and their interactions from the bottom up.”
    The needle in a protein haystack

    The work resembled the proverbial search for the needle in a haystack. A variety of molecular compounds came into question. After months of experimentation, the researchers stumbled upon a minimal combination of four proteins. As soon as these proteins fuse into a complex, they begin migrating through the capillaries of the sample carrier.

    "When we saw the images of the fluorescence microscope, we immediately knew: Now we have found the parts of the puzzle that start the engine," recalls Ökten. "If just one of these components is missing, due to a genetic defect, for example, the machinery will fail – which, because of the cilia’s importance, is reflected in a long list of serious diseases."

    Publication:

    Mohamed A. A. Mohamed, Willi L. Stepp and Zeynep Ökten
    Reconstitution reveals motor activation for intraflagellar transport
    Nature, vol. 557, p 387–391 (2018) – DOI: 10.1038/s41586-018-0105-3
    https://www.nature.com/articles/s41586-018-0105-3

    Further information:

    The work was funded by the European Research Council and the German Research Foundation (DFG) as part of the Cluster of Excellence Munich Center for Integrated Protein Science (CIPSM).

    Contact:

    Dr. Zeynep Ökten
    Department of Physics, E22
    Technical University of Munich
    James-Franck-Str. 1, 85748 Garching
    Tel.: +49 89 289 12885 – E-Mail: zoekten@ph.tum.de
    Web: http://bio.ph.tum.de/home/dr-oekten/oekten-home.html


    Weitere Informationen:

    https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34794/ Link to the press release
    https://mediatum.ub.tum.de/652209?show_id=1447277 Video Motor proteins


    Bilder

    Dr. Zeynep Ökten and co-author Willi L. Stepp at the fluorescence-microscope.
    Dr. Zeynep Ökten and co-author Willi L. Stepp at the fluorescence-microscope.
    Image: A. Battenberg / TUM
    None

    Motor proteins (green dots) move along microtubules like on a highway.
    Motor proteins (green dots) move along microtubules like on a highway.
    Image: G. Merck / TUM
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Dr. Zeynep Ökten and co-author Willi L. Stepp at the fluorescence-microscope.


    Zum Download

    x

    Motor proteins (green dots) move along microtubules like on a highway.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).