idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.11.2018 12:59

Enzymkette für die Erzeugung leuchtender Lebewesen entdeckt

Dr. Elisabeth Guggenberger Communications and Events
Institute of Science and Technology Austria

    Forscherteam identifizierte Reaktionskette für die Biolumineszenz von Pilzen und schleuste sie in anderes Lebewesen ein – Studie erschienen in PNAS

    Bei Tageslicht ist Neonothopanus nambi ein eher unscheinbarer brauner Pilz. Doch hinter der tristen Fassade verbirgt sich eine Überraschung: Nachts leuchtet der Pilz geisterhaft grün. Neonothopanus nambi ist eine von über 100 Pilzarten, die Licht ausstrahlen. Aristoteles dokumentierte dieses Phänomen der Biolumineszenz bereits, als er glühende, verrottende Baumrinde beschrieb. Jetzt haben WissenschaftlerInnen erstmals den biochemischen Prozess identifiziert, durch den biolumineszierende Pilze leuchten. Aber die ForscherInnen gingen noch weiter: Indem sie die drei Gene, die für die Lumineszenz notwendig sind, in eine nicht-leuchtende Hefe einbrachten, schufen sie einen künstlich leuchtenden Eukaryoten. Fyodor Kondrashov, Professor am Institute of Science and Technology Austria (IST Austria), ist Mitautor der heute in PNAS veröffentlichten Studie, die von Ilia Yampolsky am Institut für Bioorganische Chemie der Russischen Akademie der Wissenschaften in Moskau geleitet wurde.

    Flatternde Glühwürmchen und leuchtende Pilze auf dem Waldboden sind unter den wenigen Dingen, die man in einer dunklen Nacht tief im brasilianischen Wald sieht. Beide verhalten sich wie lebende Nachtlichter dank der Biolumineszenz, einem natürlichen Phänomen, bei dem eine Substanz namens Luciferin mit Hilfe des Enzyms Luciferase oxidiert wird und so Licht abgibt. Viele Lebewesen, von leuchtenden Würmen bis zu Tiefseefischen, sind biolumineszent. Bisher verstanden WissenschaftlerInnen den biochemischen Prozess, durch den Luciferin erzeugt wird, nur in Bakterien. Diese Wissenslücke behinderte Versuche, höhere Organismen wie Tiere und Pflanzen zum Leuchten zu bringen. Eine internationale Zusammenarbeit zwischen zwölf verschiedenen Institutionen unter der Leitung von Ilia Yampolsky, unter Beteiligung von Fyodor Kondrashov, Louisa Gonzalez Somermeyer und seinem früheren Gruppenmitglied Karen Sarkisyan, zeigte nun, wie der Eukaryot Neonothopanus nambi leuchtet.

    Die WissenschaftlerInnen fanden die Gene, die für die Biolumineszenz von Neonothopanus nambi verantwortlich sind. Durch das Screening von Genbibliotheken und mittels Genomanalyse identifizierte das Team die Enzyme, die für die Synthese von Luciferin benötigt werden. Sie zeigten, dass das Luciferin von Pilzen, also das Substrat für die Biolumineszenzreaktion, nur zwei enzymatische Schritte von einem vom Pilz erzeugten Stoffwechselprodukt, der Kaffeesäure, entfernt ist. Beim Vergleich von leuchtenden und nicht-leuchtenden Pilzen entdeckte Kondrashovs Team auch, wie Genduplikation die Biolumineszenz vor mehr als hundert Millionen von Jahren ermöglichte. Warum sich Biolumineszenz überhaupt entwickelt hat, ist noch unklar, sagt Kondrashov: „Ist Biolumineszenz vorteilhaft oder nur ein Nebenprodukt? Wir wissen es noch nicht. Es gibt Hinweise darauf, dass das Leuchten Insekten anzieht, die die Sporen verteilen. Aber ich halte diese Erklärung nicht für überzeugend."

    Mit dem Wissen, wie biolumineszierende Pilze leuchten, brachten die ForscherInnen dann nicht-biolumineszierende Eukaryoten zum Scheinen. Sie bauten das Gen, das in Neonothopanus nambi für Luciferase kodiert, und drei weitere Gene, deren Produkte die Kaffeesäure in Luciferin umwandelt, in die nicht-biolumineszierende Hefe Pichia pastoris ein – und die Hefekolonien leuchteten. „Wir gaben der Hefe keine Chemikalie, die sie zum Leuchten bringt. Stattdessen gaben wir ihr die Enzyme, die sie benötigt, um ein bereits in der Hefe vorhandenes Stoffwechselprodukt in Licht umzuwandeln", erklärt Kondrashov.

    Diese Entdeckung könnte breite Anwendung finden: von Geweben, die bei Veränderungen ihrer Physiologie leuchten, bis hin zu leuchtenden Tieren und Pflanzen. „Denken wir an Sci-Fi-Szenarien, in denen leuchtende Pflanzen Straßenlaternen ersetzen - das ist es. Das ist der Durchbruch, der dazu führen kann", resümiert Kondrashov, „es kann jedoch mehrere Jahre dauern, bis eine solche Pflanzen-Straßenleuchte entwickelt wird".

    Über das IST Austria
    Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Informatik. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne. http://www.ist.ac.at


    Wissenschaftliche Ansprechpartner:

    Fyodor Kondrashov
    Institute of Science and Technology Austria (IST Austria)
    E-mail: fkondrashov@gmail.com


    Originalpublikation:

    Genetically encodable bioluminescent system from fungi, Alexey A. Kotlobay et al., PNAS, 2018. http://www.pnas.org/content/early/2018/11/21/1803615115


    Weitere Informationen:

    https://ist.ac.at/research/research-groups/kondrashov-group/


    Bilder

    Künstlich glühende Hefezellen in einem Reagenzglas.
    Künstlich glühende Hefezellen in einem Reagenzglas.
    Sergei Shakhov
    None

    Der Pilz Neonothopanus nambi
    Der Pilz Neonothopanus nambi
    Prof. C. Stevani
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Biologie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Künstlich glühende Hefezellen in einem Reagenzglas.


    Zum Download

    x

    Der Pilz Neonothopanus nambi


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).