idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.12.2018 12:00

Datenspeicherung mit einzelnen Molekülen

Iris Mickein Kommunikation & Marketing
Universität Basel

    Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

    Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast allen Medien wird zur Speicherung ein Phasenübergang genutzt. So etwa wird für die Herstellung von CDs eine sehr dünne Metallschicht in Kunststoffen verwendet, die innerhalb von Mikrosekunden aufschmilzt, um dann wieder zu erstarren. Dies auf der Ebene von Atomen oder Molekülen zu ermöglichen, ist Gegenstand eines Forschungsprojekts unter Leitung der Universität Basel.

    Phasenwechsel einzelner Atome zur Datenspeicherung

    Ein Phasenwechsel auf Ebene einzelner Atome oder Moleküle kann prinzipiell zur Speicherung von Daten genutzt werden und in der Forschung gibt es derartige Speicher bereits. Sie sind allerdings aufwendig und teuer herzustellen. Die Gruppe um Professor Thomas Jung von der Universität Basel hat das Ziel, solch winzige Speichereinheiten aus wenigen Atomen durch Selbstorganisation herzustellen und damit den Herstellungsprozess enorm zu vereinfachen.

    Die Gruppe hat dazu zunächst ein sogenanntes metallorganisches Netzwerk hergestellt, das wie ein Sieb mit präzise definierten Poren aussieht. Wenn die richtigen Verbindungen und Bedingungen gewählt werden, ordnen sich die Moleküle dabei selbstständig zu einer regelmässigen supramolekularen Struktur an.

    Xenon-Atome: mal fest, mal flüssig

    Die Physikerin Aisha Ahsan, Erstautorin der aktuellen Studie, hat nun einzelne Xenon-Gasatome in die etwas über einen Nanometer grossen Poren des Netzwerks eingebracht. Durch Temperaturveränderungen und durch lokal angelegte elektrische Pulse gelang es ihr, den Aggregatzustand der Xenon-Atome zwischen fest und flüssig gezielt hin und her zu schalten. Sie konnte diesen Phasenübergang durch Temperaturänderung in allen Poren gleichzeitig bewirken. Die Temperaturen für den Phasenübergang hängen von der Stabilität der Xenon-Cluster ab, die je nach Anzahl der Xenon-Atome unterschiedlich ist. Mit dem Mikroskopsensor lässt sich der Phasenübergang auch lokal in einer einzelnen Pore auslösen.

    Da diese Experimente bei sehr tiefen Temperaturen von wenigen Kelvin durchgeführt werden müssen (unter -260° C), wird sich mit Xenon-Atomen selbst kein neuer Datenspeicher realisieren lassen. Die Versuche haben aber belegt, dass sich supramolekulare Netzwerke prinzipiell eignen, um winzige Strukturen herzustellen, in denen mit wenigen Atomen oder Molekülen gezielt Phasenübergänge induziert werden können.

    «Wir werden nun grössere Moleküle wie kurze Alkohole testen, da diese Aggregatszustandsänderungen bei höheren Temperaturen durchlaufen und daher eine Anwendung gut denkbar ist», bemerkt Professor Thomas Jung, der die Arbeiten betreut hat.

    Die Studie ist in Zusammenarbeit des Swiss Nanoscience Instituts (SNI), des Departements Physik der Universität Basel und des Paul Scherrer Instituts (PSI) mit den Universitäten Heidelberg und Linköping entstanden.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Thomas Jung, Universität Basel, Departement Physik, +41 61 207 39 11 und
    Laboratorium für Mikro- und Nanotechnologie, Paul Scherrer Institut, +41 56 310 45 18
    E-Mail: thomas.jung@unibas.ch


    Originalpublikation:

    Phase transitions in confinements: Controlling solid to Fluid transitions of xenon atoms in an on-surface network
    Aisha Ahsan, S. Fatemeh Mousavi, Thomas Nijs, Sylwia Nowakowska, Olha Popova, Aneliia Wäckerlin, Jonas Björk, Lutz H. Gade, Thomas A. Jung
    small (2018), doi: wiley.com/10.1002/smll.201803169


    Bilder

    Graphische Animation eines möglichen Datenspeichers auf der atomaren Skala: Ein Datenspeicherelement – bestehend aus nur 6 Xenon-Atomen – wird durch einen Spannungspuls verflüssigt.
    Graphische Animation eines möglichen Datenspeichers auf der atomaren Skala: Ein Datenspeicherelement ...
    Universität Basel, Departement Physik
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Elektrotechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Buntes aus der Wissenschaft, Wissenschaftliche Publikationen
    Deutsch


     

    Graphische Animation eines möglichen Datenspeichers auf der atomaren Skala: Ein Datenspeicherelement – bestehend aus nur 6 Xenon-Atomen – wird durch einen Spannungspuls verflüssigt.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).