idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.06.2019 12:03

Reinhart Koselleck-Projekt für „risikobehaftete Forschung“: Mit Quantentechnologie Kernspin-Anwendungen revolutionieren

Annika Bingmann Presse- und Öffentlichkeitsarbeit
Universität Ulm

    Der renommierte Ulmer Physiker Professor Martin Plenio hat ein selten vergebenes Reinhart Koselleck-Projekt über rund 1,5 Millionen Euro eingeworben. Mit dieser Förderung unterstützt die Deutsche Forschungsgemeinschaft (DFG) "risikobehaftete Projekte": Dank Quantentechnologie will Professor Plenio die Grenzen der Kernspinresonanz überwinden und die medizinische Bildgebung mittels Magnetresonanztomographie (MRT) sowie die NMR-Spektroskopie optimieren. Auf dem Weg zu solchen hoch auflösenden Kernspinresonanz-Anwendungen auf der Mikro- und Nanoskala spielen künstliche Nanodiamanten eine Schlüsselrolle.

    In einem winzigen Blutstropfen nach Krankheitsmarkern fahnden, die Struktur und Dynamik einzelner Proteine im Körper aufklären oder hochgenaue chemische Analysen von Oberflächen durchführen. Bisher sind Anwendungen der Kernspinresonanz wie die medizinische MRT-Bildgebung oder die NMR-Spektroskopie nicht sensitiv genug, um solche Untersuchungen zu ermöglichen. Doch nun will Professor Martin Plenio den Weg zur Kernspinresonanz auf der Mikro- und Nanoskala mithilfe der Quantentechnologie ebnen. Für dieses innovative, aber auch riskante Forschungsvorhaben hat die Deutsche Forschungsgemeinschaft (DFG) dem Theoretischen Physiker ein Reinhart Koselleck-Projekt und über 1,5 Millionen Euro für fünf Jahre bewilligt: Im Rahmen dieser sehr selten vergebenen Forschungsförderung haben durch besondere wissenschaftliche Leistungen ausgewiesene Forschende die Möglichkeit, relevanten Fragestellungen mit unklaren Erfolgsaussichten nachzugehen.

    Die Kernspinresonanz bildet die Grundlage der NMR-Spektroskopie, einer Standardmethode zur Untersuchung von Atomen und Molekülen in den Naturwissenschaften, sowie der medizinischen Bildgebung mittels Magnetresonanztomographie (MRT). Diese Anwendungen nutzen Kernspins, um die Struktur der molekularen magnetischen Umgebung aufzuklären und erreichen dabei eine hohe Spezifizität. Allerdings sind derzeitige Geräte, die in Forschungseinrichtungen oder Krankenhäusern eingesetzt werden, nicht sehr empfindlich und benötigen extrem starke Magnetfelder. „Die relativ geringe Sensitivität heutiger NMR-Geräte führt zu einem ungünstigen Signal-zu-Rauschen-Verhältnis und schränkt ihre Anwendbarkeit bei kleinen Proben stark ein“, erläutert Professor Martin Plenio, Leiter des Instituts für Theoretische Physik an der Universität Ulm. Im Zuge des Reinhart Koselleck-Projektes will Plenio die Grenzen der Kernspinresonanz mit Quantentechnologie überwinden.
    Ziel sind kleine, kosteneffiziente NMR-Geräte, die einfach zu handhaben sind, und auch beispielsweise in der Hausarztpraxis Anwendung finden können.

    Auf dem Weg dahin spielen künstliche Nanodiamanten eine Schlüsselrolle. Neben verbesserten Kontroll- und Detektionsmethoden wollen die Forschenden um Plenio Diamanthybridarchitekturen so optimieren, dass sowohl die Robustheit gegenüber dem Rauschen als auch die Sensitivität für NMR-Signale erhöht wird. Ein wichtiges Ziel dabei ist die Hyperpolarisation: In den Farbstoffzentren der künstlichen Diamanten kann der Elektronenspin der kleinsten Teilchen kontrolliert ausgerichtet werden. Gelingt es, diese Ausrichtung auf die umgebenden Moleküle zu übertragen, sodass alle magnetischen Momente in dieselbe Richtung zeigen, ist die Hyperpolarisation erreicht. In diesem Zustand wäre das NMR-Signal im besten Fall um den Faktor 100 000 verstärkt, und entsprechende Geräte könnten eine nie dagewesene Sensitivität erreichen. Allerdings wäre das verstärkte Signal weiterhin verrauscht und schwierig zu detektieren. Mit Methoden aus der Signalverarbeitung muss also das für die Forschenden relevante Signal vom Rauschen getrennt werden. „In den letzten Jahren sind bei der Forschung zur Detektion von Gravitationswellen viele Grundlagen zur Substraktion des Rauschens gelegt worden, die wir womöglich auf das Koselleck-Projekt übertragen können“, erklärt Martin Plenio, der 2009 als Alexander von Humboldt-Professor an die Universität Ulm gekommen ist. In der Signalverarbeitung und beim maschinellen Lernen ist er auf die Expertise von Informatikern oder Ingenieuren angewiesen, die im Zuge des Projekts eingestellt werden sollen. Weiterhin arbeitet der Theoretiker Martin Plenio eng mit Experimentalphysikern wie dem Ulmer Experten für künstliche Diamanten, Professor Fedor Jelezko, zusammen. Erfolgsversprechende analytische Arbeiten und Computersimulationen werden in Jelezkos Laboren umgesetzt. Somit profitiert die theoretische Forschung vom Kontakt zur experimentellen Realität.

    Den idealen Rahmen für das Reinhart Koselleck-Projekt bietet das Zentrum für Quanten- und Biowissenschaften (ZQB), das zeitnah bezogen wird: In dem einzigartigen Forschungsbau werden Naturwissenschaftler, Molekularmediziner und etwa Ingenieure Tür an Tür arbeiten. „Die Bewilligung des Reinhart Koselleck-Projekts ist auch ein erster Erfolg des ZQB“, betont Martin Plenio.
    Doch warum bewertet die DFG das Projekt als „risikobehaftet“? Wenn alles gut läuft, können die Forschenden in fünf Jahren die Umsetzbarkeit nanoskaliger NMR-Messungen demonstrieren und damit beginnen, entsprechende Geräte bis zur Marktreife zu entwickeln. Allerdings könnte sich auch herausstellen, dass solche hoch auflösenden NMR-Anwendungen auf der Mikro- und Nanoskala derzeit nicht entwickelt werden können.
    Doch auch wenn das Endziel vielleicht nicht erreicht wird: In jedem Fall erlangen die Forschenden nützliche Erkenntnisse für die Quantensensorik, die womöglich in neue Technologien münden. Weiterhin liefert Professor Martin Plenios Vorhaben das erste „Anwendungsbeispiel“ des Gebäudes ZQB: Das Koselleck-Projekt wird erst durch den engen Kontakt von Forschenden aus Physik, Chemie und Medizin möglich.

    Reinhart Koselleck-Projekt
    Um ein Reinhart Koselleck-Projekt können sich durch besondere wissenschaftliche Leistungen ausgewiesene Forschende zu jeder Zeit bei der DFG bewerben. Über Bewilligung und Fördersumme (maximal 1,25 Millionen Euro zuzüglich so genannter „Overheads“) entscheidet individuell eine Auswahlkommission. Die Mittel für Personal, Geräte usw. werden für hochinnovative und im positiven Sinne risikobehaftete Projekte mit einer fünfjährigen Laufzeit vergeben. Das relativ seltene und in unregelmäßigen Abständen vergebene Projekt ist nach dem 2006 verstorbenen Historiker Reinhart Koselleck benannt, der zu den Begründern der modernen Sozialgeschichte zählt. An der Universität Ulm war bereits 2009 Professor Martin Bossert, Leiter des Instituts für Nachrichtentechnik, für ein Koselleck-Projekt ausgewählt worden.


    Wissenschaftliche Ansprechpartner:

    Weitere Informationen: Prof. Dr. Martin Plenio, Tel.: 0731 50-22900, martin.plenio@uni-ulm.de


    Bilder

    Prof. Martin Plenio hat ein Reinhart Koselleck-Projekt eingeworben
    Prof. Martin Plenio hat ein Reinhart Koselleck-Projekt eingeworben
    Foto: Eberhardt/Uni Ulm
    None

    Herkömmliches MRT-Gerät an der Universitätsklinik Ulm. Im Zuge des Reinhart Koselleck-Projekts will Prof. Martin Plenio unter anderem solche Geräte optimieren
    Herkömmliches MRT-Gerät an der Universitätsklinik Ulm. Im Zuge des Reinhart Koselleck-Projekts will ...
    Foto: Heiko Grandel
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin, Physik / Astronomie
    überregional
    Forschungs- / Wissenstransfer, Forschungsprojekte
    Deutsch


     

    Prof. Martin Plenio hat ein Reinhart Koselleck-Projekt eingeworben


    Zum Download

    x

    Herkömmliches MRT-Gerät an der Universitätsklinik Ulm. Im Zuge des Reinhart Koselleck-Projekts will Prof. Martin Plenio unter anderem solche Geräte optimieren


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).