idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.11.2021 09:22

Nano-Domino mit Molekülen

Dipl.-Biologin Annette Stettien Unternehmenskommunikation
Forschungszentrum Jülich

    Vor drei Jahren gelang es Jülicher Physikern, ein einzelnes flaches Molekül kontrolliert aufzurichten. Die Ergebnisse erschienen damals in der Fachzeitschrift Nature. Nun haben sie es nach monatelangem Experimentieren wieder umgeworfen. Die gewonnenen Einblicke sind ein wichtiger Schritt hin zu einer molekularen Fertigung in drei Dimensionen.

    Die Idee, elektrische Bauelemente und Schaltungen auf der Ebene der Atome und Moleküle ähnlich wie größere Maschinen Stück für Stück zusammenzusetzen, ist eines der zentralen Ziele der Nanotechnologie. Das aktuelle Ergebnis, das Jülicher Forschende mit Partnern der englischen Universität Warwick erzielt haben, eröffnet dafür nun neue Wege – beispielsweise um ultraempfindliche Sensoren oder Quantenpunkte zur Speicherung von Quanteninformationen in Quantencomputern zu realisieren. Dr. Christian Wagner, Leiter der Forschungsgruppe „Molecular Manipulation“, spricht über die neuesten Ergebnisse.

    Dr. Christian Wagner, ein Molekül umschubsen, das klingt zunächst einmal nicht außerordentlich kompliziert. Wo liegen die Schwierigkeiten?

    Natürlich ist es nicht schwierig, kleine, zerbrechliche Dinge irgendwie kaputt zu machen. Unser Ziel war es jedoch, herauszufinden, exakt wie stabil so ein stehendes Molekül wirklich ist. Dabei muss man sich, wie bei Bruchtests, langsam an den kritischen Punkt herantasten. In unserem Fall haben wir die Temperatur schrittweise erhöht und damit das Molekül mehr und mehr durchgeschüttelt, bis es schließlich umgefallen ist. Eine einzige solche Messung erlaubt zwar schon eine grobe Abschätzung der Stabilität, aber für die nötige Genauigkeit mussten wir das Molekül mehrere hundert Mal neu aufrichten und umwerfen. Das ist wie beim Würfeln: Erst wenn man oft genug gewürfelt hat, merkt man, ob die Würfel gezinkt sind.

    Darüber hinaus ist es schwierig überhaupt festzustellen, wann das Molekül umfällt. Die Spitze des Mikroskops ist im Vergleich zu einem einzelnen Molekül riesig und stabilisiert es durch die elektromagnetische Wechselwirkung, solange sie in seiner Nähe ist. Andererseits muss die Spitze genau über dem Molekül sein, damit wir beobachten können, ob es noch steht. Anders als in der Quantenmechanik üblich, ändert sich bei diesem Experiment der Zustand also nur wenn wir nicht hingucken. Daher haben wir eine Vorgehensweise entwickelt, bei der die Spitze im Wechsel zurückgezogen und wieder an das Moleküle angenähert wird. Augen zu – Augen auf, sozusagen.

    Wie kann man sich den Vorgang auf dieser winzigen Skala ganz praktisch vorstellen?

    Ganz einfach: Wie ein Baum im Sturm. Statt der Windgeschwindigkeit erhöhen wir die Temperatur, aber der Effekt ist derselbe. Das Molekül schwankt mit immer stärkeren Ausschlägen, bis es irgendwann umfällt.

    Inwiefern ist das Molekül-Domino auch für industrielle Anwendungen relevant?

    Fertigung auf der Nanoskala kennen wir vor allem aus der Halbleiterindustrie. Dort werden winzige Strukturen Schicht für Schicht aufgebaut und teilweise wieder weggeätzt. Möglicherweise können wir solche Bauteile in Zukunft aber auch noch auf anderen Wegen herstellen. Ein Ansatz ist, sie aus einzelnen Molekülen zusammensetzen, wie mit LEGO-Steinen. Die Moleküle fungieren dann als Sensor oder Schalter. Sie behalten ihre faszinierenden und nützlichen Eigenschaften aber oft nur, wenn sie eben nicht stabil und flach aufliegen, sondern allenfalls schwach an ihre Unterlage gekoppelt sind. Wir haben jetzt erstmals vermessen und berechnet, wie stabil solche fragilen Molekülkonfigurationen eigentlich sind und damit eine wichtige Voraussetzung für die weitere technologische Entwicklung geschaffen.

    Eine interessante Anwendung sind Quantenbits aus senkrecht stehenden Molekülen. Was steckt dahinter?

    Eine dieser faszinierenden und nützlichen Eigenschaften von Molekülen sind ihre Quantenzustände, die zum Beispiel zwei Zustände – Null und Eins – kodieren können. Wenn man es schafft diese ‚Quantenbits‘ zu koppeln und zu kontrollieren, könnten sie die Bausteine für Quantencomputer bilden, wie sie derzeit weltweit entwickelt werden. Und auch hier ist es von Vorteil, wenn die Moleküle exakt angeordnet und nur schwach an ihre Umgebung gekoppelt sind; beispielsweise als stehende Moleküle. Ob molekulare Qubits letztendlich das Rennen um die besten Quantencomputer gewinnen werden ist noch völlig offen, aber unsere Arbeit erweitert unser Verständnis dafür, wie es klappen könnte.


    Wissenschaftliche Ansprechpartner:

    Dr. Christian Wagner
    Leiter der Forschungsgruppe „Molecular Manipulation“ am Peter Grünberg Institute, Quantum Nanoscience (PGI-3)
    Tel.: +49 2461 61-3538
    E-Mail: c.wagner@fz-juelich.de


    Originalpublikation:

    The stabilization potential of a standing molecule
    Marvin Knol, Hadi H. Arefi, Daniel Corken, James Gardner, F. Stefan Tautz, Reinhard J. Maurer, Christian Wagner
    Science Advances (published online 10 November 2021), DOI: https://doi.org/10.1126/sciadv.abj9751


    Weitere Informationen:

    https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2021/fachmeldungen... Pressemitteilung des Forschungszentrums Jülich


    Bilder

    Dr. Christian Wagner forscht an Methoden, um die Möglichkeiten der Rastertunnelmikroskopie zu erweitern.
    Dr. Christian Wagner forscht an Methoden, um die Möglichkeiten der Rastertunnelmikroskopie zu erweit ...
    Sascha Kreklau
    Forschungszentrum Jülich / Sascha Kreklau

    Da liegt es wieder: PTCDA-Molekül auf einer Oberfläche aus Silberatomen.
    Da liegt es wieder: PTCDA-Molekül auf einer Oberfläche aus Silberatomen.
    Christian Wagner
    Forschungszentrum Jülich / Christian Wagner


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Elektrotechnik, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


     

    Dr. Christian Wagner forscht an Methoden, um die Möglichkeiten der Rastertunnelmikroskopie zu erweitern.


    Zum Download

    x

    Da liegt es wieder: PTCDA-Molekül auf einer Oberfläche aus Silberatomen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).