idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
30.05.2023 11:37

Biophotonik-Forschung: Zelluläre Transporter im Blick behalten

Christina Kaufmann Hochschulkommunikation
Hochschule München

    Biophotonik-Professor Thomas Hellerer und Doktorand Thomas Kellerer der Hochschule München entwickeln ein innovatives Bildgebungsverfahren, das winzige Wirkstofflieferanten beispielsweise von mRNA-Impfstoffen in der Zelle in Echtzeit trackt – und gleichzeitig Informationen über deren Umwelt liefert.

    München, 30. Mai 2023 – Die Corona-Pandemie hat sie in den Fokus der Öffentlichkeit gerückt: Impfstoffe, die auf der mRNA-Technologie basieren, haben wesentlich zur Bekämpfung der Pandemie beigetragen. Sie setzen voraus, dass das Botenmolekül mRNA in das Innere von Zellen geschleust wird. Da „nackte“ mRNA sehr empfindlich ist, wird sie dabei von winzigen Fettkügelchen umhüllt, sogenannten Lipid-Nanopartikeln (LNPs). Die Freisetzung der mRNA in der Zelle besser zu verstehen, ist eine wichtige Voraussetzung, um die Effizienz der Impfstoffe zu steigern. Hier setzt Prof. Dr. Thomas Hellerer von der Fakultät für angewandte Naturwissenschaften und Mechatronik mit seinem Projekt SEMPA-Track (Entwicklung einer zeitaufgelösten Tracking-Mikroskopie zur Verfolgung der intrazellulären Freisetzung von Nukleinsäuren durch Lipid-Nanopartikel) an: Der HM-Professor für Biophotonik entwickelt mit seinem Doktoranden Thomas Kellerer ein neues Bildgebungsverfahren, mit dem das Verhalten der Partikel umfassend analysiert werden kann.

    Parameter der mRNA-Freisetzung
    Treffen LNPs auf die Zelloberfläche, entstehen durch Einstülpen und Abschnüren der Zellmembran kleine Vesikel – sogenannte Endosomen – in deren Innerem die LNPs in die Zelle gelangen. Die Endosomen diffundieren im Zellinneren, bis sie sich auflösen, sodass die LNPs und in der Folge auch die mRNA freigesetzt werden. Dieser als „endosomal escape“ bezeichnete Vorgang ist allerdings nicht besonders effektiv, denn nur ein Teil der mRNA gelangt tatsächlich ins Zellinnere. Welche Parameter dabei eine Rolle spielen, wollen die Forschenden nun im Detail beobachten.

    Umweltparameter beeinflussen das Fluoreszenzsignal
    Dabei stehen sie vor großen technischen Herausforderungen: Zum einen flitzen die Endosomen mit den nur 40-100 Nanometer großen LNPs blitzschnell im Zickzackkurs durch die Zelle. Zum anderen wird vermutet, dass die Umgebung, insbesondere der pH-Wert, die Auflösung der Endosomen maßgeblich beeinflusst. Daher müssen die Forschenden gleichzeitig auch die Mikroumgebung der Teilchen im Blick behalten.

    Um diese Anforderungen zu erfüllen, verwenden die Wissenschaftler:innen ein spezielles Bildgebungsverfahren, das auf der sogenannten Fluoreszenzlebensdauer-Mikroskopie (FLIM) beruht: Dabei werden die Proben mit unterschiedlichen Farbstoffen markiert und es wird erfasst, welche Verzögerung die Fluoreszenz nach Anregung durch eine Lichtquelle im Mittel hat. „In einer umfassenden Analyse konnten wir zeigen, dass diese Fluoreszenzlebensdauer charakteristisch für einen Farbstoff ist, sofern die äußeren Bedingungen stabil bleiben“, sagt HM-Doktorand Thomas Kellerer, der im Rahmen einer kooperativen Promotion mit der LMU München an diesem Projekt arbeitet. Da der pH-Wert die Fluoreszenzlebensdauer bestimmter Farbstoffe beeinflusst, kann über winzige Verschiebungen der Fluoreszenzlebensdauer – es geht um Größenordnungen von nur 0,5 Nanosekunden – auch der pH-Wert in der Nähe des Partikels gemessen werden.

    Mikroskop nachführen im Zehntelsekundentakt
    Gleichzeitig entwickeln die Biophotoniker ein innovatives Verfahren, damit das Mikroskop den in der Zelle herumflitzenden Endosomen schnell genug folgen kann: „Da die Vesikel die Bildebene des Mikroskops sehr schnell verlassen, ist eine aktive Nachführung des Bildausschnittes unabdingbar. Da geht es um wenige Zehntelsekunden“, sagt Hellerer. Dafür erzeugen die Wissenschaftler durch geschickte Anregung mit zwei Farben ein besonderes überlappendes Farbsignal und erfassen durch den Vergleich der Detektionskanäle die Richtung, in die sich das Teilchen bewegt. „Ein erheblicher Anteil unserer Technologie-Entwicklung besteht darin, dieses System schnell genug zu machen“, betont der Professor. „Solche tiefgreifenden Modifizierungen von etablierten Systemen sind eine Stärke unseres Labors.“

    Gegenüber den bisherigen Ansätzen hat die neue Technologie zudem den Vorteil, dass das Fluoreszenz-Signal gleich mehrere Informationen liefert, sodass weniger Farbstoff eingesetzt werden kann. „Das ist für unsere medizinischen Fragestellungen sehr wichtig, weil die kleinen LNPs nur wenig Farbstoff als Marker aufnehmen können“, sagt Hellerer. Diese Entwicklungsarbeit soll im Sommer abgeschlossen werden. In einem zweiten Schritt wollen die Forschenden dann biologische Proben untersuchen.

    Gerne vermitteln wir einen Interviewtermin mit Prof. Dr. Thomas Hellerer und HM-Doktorand Thomas Kellerer.

    Kontakt: Christiane Taddigs-Hirsch unter T 089 1265-1911 oder per Mail an presseinfo@hm.edu


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Thomas Hellerer
    Tel.: 089 1265-1688
    thomas.hellerer@hm.edu


    Originalpublikation:

    Thomas Kellerer, Janko Janusch, Christian Freymüller, Adrian Rühm, Ronald Sroka, Thomas Hellerer: Comprehensive Investigation of Parameters Influencing Fluorescence Lifetime Imaging Microscopy in Frequency and Time-Domain Illustrated by Phasor Plot Analysis, in International Journal of Molecular Sciences, 2022, 23(24), 15885; https://doi.org/10.3390/ijms232415885


    Bilder

    Forschungsteam SEMPA-Track: Dem Mechanismus des Einschleusens von mRNA-Impfstoffen in Zellen auf der Spur
    Forschungsteam SEMPA-Track: Dem Mechanismus des Einschleusens von mRNA-Impfstoffen in Zellen auf der ...
    Julia Bergmeister

    HM-Doktorand Thomas Kellerer arbeitet an elektrischen Schaltungen, die für enormen Geschwindigkeitszuwachs in der Datenverarbeitung sorgen. Sie bereiten die Fluoreszenzsignale auf, bevor jene digital ausgewertet werden
    HM-Doktorand Thomas Kellerer arbeitet an elektrischen Schaltungen, die für enormen Geschwindigkeitsz ...
    Julia Bergmeister


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Elektrotechnik, Medizin, Physik / Astronomie
    überregional
    Forschungs- / Wissenstransfer, Forschungsprojekte
    Deutsch


     

    Forschungsteam SEMPA-Track: Dem Mechanismus des Einschleusens von mRNA-Impfstoffen in Zellen auf der Spur


    Zum Download

    x

    HM-Doktorand Thomas Kellerer arbeitet an elektrischen Schaltungen, die für enormen Geschwindigkeitszuwachs in der Datenverarbeitung sorgen. Sie bereiten die Fluoreszenzsignale auf, bevor jene digital ausgewertet werden


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).