idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/14/2017 10:23

The glue that keeps cells together

Robert Emmerich Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Studies conducted by the Biocentre shed new light on cell-cell contacts: Physical effects play an important role in their generation and stability as the journal "Nature Physics" reports.

    Controlled adhesion and division are crucial for our body's cells. This is the case, for instance, when the organs develop in an embryo or when broken skin is repaired during the healing process.

    The importance of close cell-cell adhesion becomes evident especially when it is dysfunctional, for example when cells become loose in a tumour and break free. The tumour cell complex tends to dissolve in this case and create metastases.

    Cadherins as key actors

    The cadherin proteins assume a central role in the above mentioned examples. Located in the cell membranes, they are capable of creating strong bonds both among themselves and with the cadherins of other cells. A bond between two cadherin molecules of two cells triggers the formation of extensive contact zones.

    The process of establishing and detaching contacts seems to be much more dependent on purely physical effects than thought previously. This is shown by computer simulations and experiments published in "Nature Physics" by Dr Susanne Fenz from the University of Würzburg's Biocentre with colleagues from Jülich, Stuttgart, Erlangen and Marseilles.

    Connecting model membranes

    The biophysicist brought together model membranes containing cadherin and then selectively changed different physical parameters that influence the membrane's fluctuation behaviour such as the concentration of sugar and salt.

    "We observed that already very small changes had a huge impact on the formation and growth of cell-cell contacts," says Dr Fenz, who leads a junior research group at the Department for Cell and Developmental Biology (Zoology I). "So it is possible to regulate a biological process by changing only physical parameters such as the temperature or local lipid composition of the membrane."

    But according to Fenz, it is still doubtful to what extent the results for the model membranes can be transferred to living systems. "We will have to confirm the relevance of our observations in living systems," says Susanne Fenz.

    Focus on pathogens that cause sleeping sickness

    The Würzburg researcher has a general interest in the biophysics of membranes. For example, she also studies the pathogens that cause the sleeping sickness. The protozoa of the species Trypanosoma are one of Professor Markus Engstler's focal areas of research; he is the head of the Department for Zoology I at the Julius-Maximilians-Universität (JMU) in Würzburg, Germany.

    What's special about the cell membrane of Trypanosoma is that it is densely populated with a protein shell that is varied continuously in a population. This high variability of the protein shell allows the pathogens to hide efficiently from the immune systems of animals and humans.

    Membrane fluctuations mediate lateral interaction between cadherin bonds. Susanne F. Fenz, Timo Bihr, Daniel Schmidt, Rudolf Merkel, Udo Seifert, Kheya Sengupta & Ana-Sunčana Smith. Nature Physics, 12. June 2017, DOI: 10.1038/nphys4138

    Contact

    Dr Susanne Fenz, head of the junior research group "Physics of the Cell", Biocentre of the University of Würzburg, JMU, T +49 931 31-89712, susanne.fenz@uni-wuerzburg.de


    More information:

    http://rdcu.be/tpWy The Nature Physics publication
    http://www.zeb.biozentrum.uni-wuerzburg.de/people/staff_scientists/susanne_fenz/ Website of Dr Susanne Fenz


    Images

    Snapshots of the bond of a giant vesicle on a plane model membrane. Dark pixels mark the points of contact between the membranes. They grow larger and more numerous over time.
    Snapshots of the bond of a giant vesicle on a plane model membrane. Dark pixels mark the points of c ...
    (Picture: Susanne Fenz)
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Biology, Medicine, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Snapshots of the bond of a giant vesicle on a plane model membrane. Dark pixels mark the points of contact between the membranes. They grow larger and more numerous over time.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).