idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/04/2019 14:00

One third less consumption: Industry & research work together on fuel-efficient SI engines

Dipl.-Übers. Petra Tutsch Kommunikation / Pressestelle
Forschungsvereinigung Verbrennungskraftmaschinen e.V.

    In order to meet future CO2 limits, SI engine-driven vehicles must consume significantly less fuel. A new project of the Research Association for Internal Combustion Engines (FVV) is investigating how this can be achieved. The ambitious goal is to increase the efficiency of future spark-ignition engines to up to 50 per cent. At the same time, fuel consumption is to be reduced by around one third compared with today's fleet. The project is exploring new engine technologies in interaction with electrified powertrains and synthetic fuels.

    “CO2 emissions from road transport must fall significantly in the next decade. It is essential that industry and science team up to meet this challenge “, says Dietmar Goericke, Managing Director of the FVV. " In addition to electrification, more efficient internal combustion engines and carbon-neutral synthetic fuels will make a decisive contribution to achieving the CO2 targets.“

    Frankfurt/M. - 04.03.2019 // The more chemical energy contained in the fuel can be converted into mechanical power, the better the efficiency and thus the fuel consumption rate of the vehicle. In the "ICE 2025+" research project financed from the FVV's own funds, four university institutes from Aachen, Braunschweig, Darmstadt and Stuttgart are investigating various measures aimed at significantly increasing engine efficiency. The aim of the project is to optimise the entire powertrain system in such a way as to achieve the lowest possible consumption in real world operation. In relation to the new WLTP cycle, this means achieving an average power efficiency of around 40 per cent, and even 50 per cent at specific operating points. New passenger car spark-ignition engines currently achieve an optimum performance of around 30 % per cent.

    The researchers' methodological approach consists of combining various pre-selected technologies - such as higher compression ratios or water injection - and investigating their influence on system efficiency. In order to adapt the powertrain system to real world driving conditions, various vehicle classes as well as hybrid variants - from mild 48 volts to high-voltage hybrid powertrains - will be included in the study.

    The participating researchers work closely together. The first work package, which is carried out by the Institute for Internal Combustion Engines and Powertrain Systems (vkm) at Technische Universität Darmstadt, lays the foundations for vehicle simulation. This is important in order to be able to make exact statements about the CO2 emissions of the entire vehicle under realistic operating conditions with the engine data generated in the other work packages. It is also part of the job to find an operating strategy for the electric powertrain components that enables the combustion engine to work as efficiently as possible.

    The second part of the project, engine simulation, which is being carried out at the Institute for Internal Combustion Engines and Automotive Engineering (IVK) at the University of Stuttgart, consists primarily of being able to make binding statements about increases in efficiency through various combinations of technologies with the aid of rapid calculation methods. In addition, a virtual engine is “designed“, which makes it possible to estimate the impact of external measures - such as exhaust heat recovery - on the engine.
    Within "ICE 2025+", major measures to increase efficiency will not only be simulated, but also tested on a single-cylinder research engine. The Institute for Internal Combustion Engines (ivb) at Braunschweig Technical University is responsible for setting up and operating this test engine. The results obtained are not only used for technology evaluation but are also intended to improve existing simulation models.

    The fourth work package, looks into the influence of carbon-neutral fuels on engine behaviour and is being carried out at the Chair of Internal Combustion Engines (vka) at RWTH Aachen University. Various synthetic fuels, both pure and blended, are being tested on a research engine for this purpose. In addition to assessing the potential of possible fuel alternatives in terms of efficiency and emissions, the results should also serve to improve existing simulation methods of the combustion process.

    The results of the research project "ICE 2025+" will be available in spring 2020.

    It remains to be seen which powertrains, energy sources and transport concepts will determine passenger and freight transport in 2050. In the short and medium term, energy-efficient hybrid vehicles and carbon-neutral fuels must make an effective contribution to climate-neutral mobility. For this reason, the FVV funds pre-competitive Industrial Collective Research (IGF) projects from its own financial resources in order to contribute to the long-term goal of "zero impact emission mobility".


    Contact for scientific information:

    Dipl.-Ing. Dietmar Goericke, FVV Managing Director
    +49 69 66031821, goericke@fvv-net.de


    Original publication:

    https://www.fvv-net.de/en/media/press/detail/one-third-less-consumption-industry...


    Images

    Engine test bench for the research of electrified powertrains at the Center for Mobile Propulsion (CMP)
    Engine test bench for the research of electrified powertrains at the Center for Mobile Propulsion (C ...
    Peter Winandy | RWTH Aachen University
    None


    Attachment
    attachment icon Package (Press release & media)

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students
    Environment / ecology, Mechanical engineering, Oceanology / climate, Politics, Traffic / transport
    transregional, national
    Research projects
    English


     

    Engine test bench for the research of electrified powertrains at the Center for Mobile Propulsion (CMP)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).