idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/13/2019 11:34

Fusible and printable elastomer sensors for e-textiles

Marie-Luise Righi PR und Kommunikation
Fraunhofer-Institut für Silicatforschung ISC

    Integrating sensoric functions into textiles or elastomers is way more difficult than equipping machines because it requires movable or extensible sensors. The Center Smart Materials CeSMa of the Fraunhofer ISC with its experience in the field of adaptive elastomers has developed highly elastic sensors and actuators based on silicone. They provide a wide range of sensoric and actoric functions for smart electronic textiles (e-textiles) with a broad application potential in medical technology, in sports, in furniture, vehicles or in transport safety. CeSMa will be presenting its developments from May 14-17 at TechTextil 2019 in Frankfurt.

    By adding electrically conductive components, the silicone can be produced as a stretchable conductive foil, usable e.g. as flexible heating element. If alternating layers of conductive and insulating silicone are laminated together, stretchable capacitors are created that can be used to measure strain and pressure. Depending on the application, the design and softness of the sensors can be adjusted. This allows tailor-made sensitivity and characteristic of the sensors according to the requirements of the customers.

    The silicone used is skin-friendly, washable, robust and very flexible. Sensors made of this silicone withstand even extreme strains and very frequent use without losing their essential qualities. The sensors convert mechanical strain into an electrical signal and are therefore also suitable for measuring signals of the human body, e.g. breathing, movement or muscle contraction.

    In a current project CeSMa has further developed its elastomer sensors and their processing for integration into textiles. The stretchable sensors and actuators can now be applied to textiles by printing techniques or ironing.

    The elastomer sensors can be applied permanently to polyester and cotton – the most commonly used textiles in the artificial and natural fiber sector – with a conventional iron in a short time (about 1 minute) even at low temperatures of 80 °C. Since the method allows an individual placement of sensor structures, it is especially intended for smaller quantities. The desired structures can be produced separately as ironing films, so that in theory any sensor pattern and various functions can be combined. Also, different surface structures can be generated, ranging from "super smooth" to "highly structured". The sensors can be ironed on very different textiles and are not only suitable for original equipment, but also for the retrofitting of textiles – even in private household.

    With direct textile printing processes, sensor structures can be imprinted on the desired material in the shortest possible time. The process can be integrated very well into the further processing of the textiles. Very large quantities up to mass production are possible. The printing process is technically more complex compared to ironing, but due to the higher number of produced pieces it is more cost-effective and therefore particularly interesting for larger manufacturers of textile goods.

    Heating surfaces and pressure or strain sensors can be ironed or printed as needed. They can be connected with commercially available cables or with printed elastic conductive paths. This results in textile-integrated sensor and actuator systems that can be used to generate and/or control functions (heat, current pulses, flares, data processing).


    Original publication:

    https://www.isc.fraunhofer.de/en/press-and-media/press-releases/fusible-and-prin...


    More information:

    http://www.cesma.de/en


    Images

    Sensor patterns and conducting paths printed on polyester textile.
    Sensor patterns and conducting paths printed on polyester textile.
    © K. Selsam for Fraunhofer ISC
    None

    Sensor structures with fine and coarse pored surfaces can be manufactured as fusable foils
    Sensor structures with fine and coarse pored surfaces can be manufactured as fusable foils
    © K. Selsam for Fraunhofer ISC
    None


    Criteria of this press release:
    Business and commerce, Journalists
    Art / design, Chemistry, Information technology, Materials sciences
    transregional, national
    Miscellaneous scientific news/publications, Transfer of Science or Research
    English


     

    Sensor patterns and conducting paths printed on polyester textile.


    For download

    x

    Sensor structures with fine and coarse pored surfaces can be manufactured as fusable foils


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).