idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/16/2019 12:12

New test rig components for faster development and validation

Anke Zeidler-Finsel Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

    Numerical simulations have massively accelerated product development over the past few decades. A variety of scenarios can be tested in a short time and the number of necessary prototypes has been steadily reduced. Nevertheless, physical tests will not lose significance. Numerical models must be validated and approval testing must be carried out. In the project “Digitization in Testing Technology”, scientists from the Fraunhofer Institute for Structural Durability and System Reliability LBF have developed tunable test rig components and a mechanical hardware-in-the-loop approach. The Results will present at the Automotive Testing Expo in Stuttgart, May 21-23, 2019 in hall 8, booth 8052.

    What is the optimal combination of real and virtual world? The research team from Darmstadt developed tunable components and a mechanical hardware-in-the-loop interface. Tunable components allow continuous adjustment of mechanical characteristics. For example, mounts with tunable stiffness enable testing of a test specimen under different boundary conditions or the implementation of tunable vibration absorbers.

    If tunable rubber mounts are used as a development tool, with stiffness and damping adjustable independently of each other, it is possible to forgo the first bearing prototypes. This makes it possible to provide the mount manufacturer with optimized specifications at an early stage of development. Mechanical hardware-in-the-loop interfaces can be used to simulate more complex boundary conditions in experiments, especially in the field of NVH development. The interface behaves equivalent to a underlying numerical model in a wide frequency range. For example, an adaptive shock absorber can be tested for different combinations of top mount and chassis without carring out any modifications to the testing bench.

    »The transfer of numerical simulation methods into the physical world of testing makes it possible for development processes to be drastically accelerated and costs to be reduced. Furthermore, our technologies and test rig components offer new possibilities for validation of numerical simulation models. Models can be validated for different operating points with less effort«, says Jan Hansmann, research associate and project manager at the Fraunhofer LBF. Next, the research team from Darmstadt wants to work on the series-production implementation, which requires close cooperation with industrial partners.


    Contact for scientific information:

    Jan Hansmann, jan.hansmann@lbf.fraunhofer.de


    More information:

    http://www.lbf-jahresbericht.de/en/services/project-overview/vibration-technolog... Fuzzy control systems, Pareto optimization, genetic algorithms
    http://www.lbf-jahresbericht.de/en/services/project-overview/reliability/structu... hardware-in-the-loop testing environment


    Images

    Prototype of a mount with tunable stiffness.
    Prototype of a mount with tunable stiffness.
    Photo: Fraunhofer LBF/Raapke
    None

    Prototype of a mechanical hardware-in-the-loop interface.
    Prototype of a mechanical hardware-in-the-loop interface.
    Photo: Fraunhofer LBF/Raapke
    None


    Criteria of this press release:
    Business and commerce, Journalists
    Electrical engineering, Information technology, Materials sciences, Mechanical engineering
    transregional, national
    Miscellaneous scientific news/publications, Research projects
    English


     

    Prototype of a mount with tunable stiffness.


    For download

    x

    Prototype of a mechanical hardware-in-the-loop interface.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).