idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/14/2019 12:47

What goes up must come down – landing locusts crash on their heads

Ulrich Berlin Presse- und Öffentlichkeitsarbeit
Hochschule Bremen

    Results could be very helpful for engineers faced with for example the problem of landing small objects such as unmanned space probes on unknown terrain.

    For many grasshoppers and other insects jumping is a fast and effective way to escape from their predators. In particular desert locusts are known for their powerful jumps. To avoid catapulting into the wrong direction, locusts are able to precisely control the movement of their prominent hind legs. However, what happens when the locusts want to land? Are they also able to precisely control their landing movements like airplanes do? Do they slow down to prevent damage to their body?

    Researchers from the Biomimetics-Innovation-Centre at the Hochschule Bremen (HSB) have now shown for the first time the details of crashing behavior in jumping locusts. Their results published in the current issue of the “Journal of Experimental Biology” show that falling locusts surprisingly do not show any notable forms of slowing down when approaching the surface, however crashed head-first into the ground.

    “We were puzzled not to see any slowing down when the locusts approached the ground.“ says Simon Reichel, who was part of the research team at HSB. “Instead, the insects always rotated their body in midair. No matter how we held the insect before the fall, they almost always fell head first towards ground.”

    This stereotypic falling movement of the falling locust leads to a very predictable body posture at impact. “If you know how you will fall, then you can prepare very well for the actual impact.” says Reichel. This behavior thus reduces the time to prepare for the next jump and increases the chance to escape from the predator. Interestingly, the head-first impact was also observed in dead locusts, which indicates the passive role of the insect body in controlling the fall. To further test the role of active movements the team also dropped cold locusts. “Cold locusts have only very limited control of their limb movements.” says Reichel. “Very similar to a drunk person.” Consequently, these cold locusts often showed uncontrolled falling movements. This observation indicates that some degree of active control is required to improves the chances of a controlled crash.

    “The cuticle exoskeleton of insects is tough enough to withstand the relatively small forces during the impact.” says Prof. Jan-Henning Dirks (HSB). “It thus seems more important for the insect to be able to predict how to crash, instead of reducing the effect of the crash. We believe that our results could be very helpful for engineers faced with for example the problem of landing small objects such as unmanned space probes on unknown terrain.” Instead of worrying about slowing down or actively controlling the descent in real time, new bio-inspired probes could be built using a design which always results in a more predictable crash and allows them to quickly recover to proceed with their tasks.

    Original article
    What goes up must come down: biomechanical impact analysis of falling locusts
    Simon V. Reichel, Susanna Labisch, Jan-Henning Dirks
    Journal of Experimental Biology 2019 222: jeb202986 doi: 10.1242/jeb.202986 Published 22 July 2019

    For further information please contact
    Prof. Dr. Jan-Henning Dirks, Biological Structures and Biomimetics
    Hochschule Bremen – City University of Applied Sciences
    jan-henning.dirks@hs-bremen.de

    Video footage for press use available for free from

    - http://movie.biologists.com/video/10.1242/jeb.202986/video-2
    Caption: Highspeed recording comparing the falling behavior of alive, cold and dead locusts (S. gregaria). The warm locusts quickly recover to prepare for the next jump, whilst the cold and dead locusts showed far less control of their descent.

    - http://movie.biologists.com/video/10.1242/jeb.202986/video-1
    Caption: Highspeed recording showing a locusts (S. gregaria) crashing head first onto a substrate. The locusts turn their body midair to ensure a predictable crash onto their head. This behavior allows a quick recovery and preparation for the next escape jump.

    All videos need to be credited as: “Reproduced/adapted with permission of Journal of Experimental Biology, Reichel, S. V., Labisch, S. and Dirks, J.-H., 2019, Journal of Experimental Biology, volume 222, doi:10.1242/jeb.202986.”


    Contact for scientific information:

    Prof. Dr. Jan-Henning Dirks, Biological Structures and Biomimetics
    Hochschule Bremen – City University of Applied Sciences
    jan-henning.dirks@hs-bremen.de


    Original publication:

    Original article
    What goes up must come down: biomechanical impact analysis of falling locusts
    Simon V. Reichel, Susanna Labisch, Jan-Henning Dirks
    Journal of Experimental Biology 2019 222: jeb202986 doi: 10.1242/jeb.202986 Published 22 July 2019


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils
    Biology, Materials sciences, Mechanical engineering
    transregional, national
    Research results, Transfer of Science or Research
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).