idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/04/2021 11:32

Magnetic whirls in confined spaces

Kathrin Voigt Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Mobility of skyrmions in geometric structures depends on their arrangement

    In a close collaboration between experimental and theoretical physicists at Johannes Gutenberg University Mainz (JGU), the research groups of Professor Mathias Kläui and Dr. Peter Virnau investigated the behavior of magnetic whirls within nanoscale geometric structures. In their work published in "Advanced Functional Materials", the researchers confined small magnetic whirls, so-called skyrmions, in geometric structures. Skyrmions can be created in thin metal films and have particle-like properties: They exhibit high stability and are repelled from each other and from specially prepared walls. Experiments and accompanying computer simulations showed that the mobility of skyrmions within these geometric structures depends massively on their arrangement. In triangles, for example, three, six, or ten skyrmions arranged like bowling pins are particularly stable.

    "These studies lay the foundation for the development of novel non-conventional computing and storage media based on the movement of magnetic vortices through microscopic corridors and chambers," explained Professor Mathias Kläui. The research was funded by the Dynamics and Topology (TopDyn) Top-level Research Area, which was founded in 2019 as a collaboration between Johannes Gutenberg University Mainz, TU Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. "This work is an excellent example for the interdisciplinary cooperation between simulation and experiment, which was only made possible by TopDyn's funding," emphasized Dr. Peter Virnau.


    Contact for scientific information:

    PD Dr. Peter Virnau
    Statistical Physics and Soft Matter Theory group
    Institute of Physics
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone +49 6131 39-20493
    fax +49 6131 39-20496
    e-mail: virnau@uni-mainz.de
    https://www.komet1.physik.uni-mainz.de/people/peter-virnau/

    Professor Dr. Mathias Kläui
    Condensed Matter Theory group
    Institute of Physics
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone +49 6131 39-23633
    e-mail: klaeui@uni-mainz.de
    https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/


    Original publication:

    C. Song et al., Commensurability between Element Symmetry and the Number of Skyrmions Governing Skyrmion Diffusion in Confined Geometries, Advanced Functional Materials, 28 February 2021,
    DOI: 10.1002/adfm.202010739
    https://onlinelibrary.wiley.com/doi/10.1002/adfm.202010739


    More information:

    http://Related links:
    https://www.klaeui-lab.physik.uni-mainz.de – Kläui Lab at the JGU Institute of Physics ;
    https://www.komet1.physik.uni-mainz.de/ – Statistical Physics and Soft Matter Theory group at the JGU Institute of Physics ;
    https://topdyn.uni-mainz.de/ – Dynamics and Topology (TopDyn) Top-level Research Area
    http://Read more:
    https://www.uni-mainz.de/presse/aktuell/12071_ENG_HTML.php – press release "Magnetic whirls crystallize in two dimensions" (9 Sept. 2020)


    Images

    Stable states with three, six, and ten skyrmions enclosed in a triangle. The plot shows time-averaged skyrmion positions from experiment (top row) and corresponding computer simulations (bottom row).
    Stable states with three, six, and ten skyrmions enclosed in a triangle. The plot shows time-average ...

    Ill./©: Jan Rothörl, Chengkun Song


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Electrical engineering, Information technology, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Stable states with three, six, and ten skyrmions enclosed in a triangle. The plot shows time-averaged skyrmion positions from experiment (top row) and corresponding computer simulations (bottom row).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).