idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.08.2014 14:28

Wenn Teilchen gleichzeitig nach rechts und nach links fallen

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    Ein Bleistift, der auf der Spitze steht, wird durch eine noch so kleine Störung in die eine oder die andere Richtung kippen. In der Quantenwelt ist es prinzipiell möglich, dass die Teilchen eines Systems gleichzeitig nach links und nach rechts fallen. Dieses „und“ – die sogenannte Quantenverschränkung der Teilchen – vom klassischen „oder“ zu unterscheiden, stellt eine experimentelle Herausforderung für die Forschung dar. Wissenschaftler des Kirchhoff-Instituts für Physik der Universität Heidelberg haben nun eine neue und allgemeine Methode entwickelt, die den Nachweis der Verschränkung für beliebige Zustände von großen atomaren Systemen erlaubt.

    Pressemitteilung
    Heidelberg, 1. August 2014

    Wenn Teilchen gleichzeitig nach rechts und nach links fallen
    Heidelberger Physiker entwickeln eine neue Methode zum Nachweis der Quantenverschränkung

    Ein Bleistift, der auf der Spitze steht, wird durch eine noch so kleine Störung in die eine oder die andere Richtung kippen. In der Quantenwelt ist es prinzipiell möglich, dass die Teilchen eines Systems gleichzeitig nach links und nach rechts fallen. Dieses „und“ – die sogenannte Quantenverschränkung der Teilchen – vom klassischen „oder“ zu unterscheiden, stellt eine experimentelle Herausforderung für die Forschung dar. Wissenschaftler des Kirchhoff-Instituts für Physik der Universität Heidelberg haben nun eine neue und allgemeine Methode entwickelt, die den Nachweis der Verschränkung für beliebige Zustände von großen atomaren Systemen erlaubt. Die Forschungsergebnisse auf dem Gebiet der Quantenmetrologie wurden in „Science“ veröffentlicht.

    In seinen Experimenten nutzte das Team unter der Leitung von Prof. Dr. Markus Oberthaler den klassisch instabilen Zustand eines ultrakalten atomaren Gases, eines sogenannten Bose-Einstein-Kondensats. Dabei handelt es sich um den extremen Aggregatzustand eines Systems nicht unterscheidbarer Teilchen, die sich überwiegend im selben quantenmechanischen Zustand befinden. Die Heidelberger Forscher verwendeten ein Gas aus rund 500 Atomen mit Temperaturen von 0,00000001 Kelvin über dem absoluten Temperaturnullpunkt. Nach kurzer Zeit entwickelt sich daraus ein System mit hoher Teilchenverschränkung. Um diesen „Und“-Zustand mit seinen besonderen quantenmechanischen Eigenschaften experimentell nachweisen zu können, musste das Team eine Vielzahl dieser atomaren Systeme unter gleichen Bedingungen bei jeweils verschiedenen Einstellungen des Laboraufbaus realisieren. „Dieses Vorgehen erforderte Messungen über mehrere Wochen, in denen die Schwankungen des von uns eingesetzten Magnetfelds unter ein Zehntausendstel des Erdmagnetfelds reduziert werden mussten“, erläutert der Erstautor der Studie, Helmut Strobel.

    Eine zweite Herausforderung stellte die richtige Analyse der Messungen dar. Dazu mussten neue statistische Konzepte entwickelt werden. Ziel war es, aus den Daten der Messungen den für die Quantenmetrologie relevanten Informationsgehalt herauszufiltern. Diese sogenannte Fisher-Information, die nach dem Genetiker und Statistiker Ronald A. Fisher benannt ist, quantifiziert auf eindeutige und allgemeine Weise die sensitive Abhängigkeit des jeweiligen quantenmechanischen Zustands von den metrologisch relevanten Messgrößen. Bei einem atomaren Bose-Einstein-Kondensat dieser Größe ist dies mit herkömmlichen Verfahren nicht möglich, wie Markus Oberthaler erläutert. Die neue Methode ist darüber hinaus auf noch größere Systeme anwendbar. „Wir können damit beliebige experimentelle Quantenzustände daraufhin untersuchen, ob sie sich für präzisere Messungen eignen als klassisch möglich“, so Prof. Oberthaler. „Dabei handelt es sich um ein hochaktuelles Thema auf dem Gebiet der Quantenmetrologie.“

    Markus Oberthaler leitet am Kirchhoff-Institut für Physik die Arbeitsgruppe Synthetische Quantensysteme. An den Forschungsarbeiten waren Wissenschaftler des Forschungszentrums Quantum Science and Technology in Arcetri (QSTAR) und des European Laboratory for Non-Linear Spectroscopy (LENS) beteiligt.

    Informationen im Internet:
    http://www.kip.uni-heidelberg.de/matterwaveoptics

    Originalpublikation:
    H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D.B. Hume, L. Pezzè, A. Smerzi, M.K. Oberthaler: Fisher information and entanglement of non-Gaussian spin states. Science 25 July 2014: Vol. 345 no. 6195 pp. 424-427, doi: 10.1126/science.1250147

    Kontakt:
    Prof. Dr. Markus Oberthaler
    Kirchhoff-Institut für Physik
    Telefon (06221) 54-5170
    markus.oberthaler@kip.uni-heidelberg.de

    Kommunikation und Marketing
    Pressestelle, Telefon (06221) 54-2311
    presse@rektorat.uni-heidelberg.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).