

FRAUNHOFER IWU

PRESS RELEASE

November 4, 2025 || Page 1 | 2

Light, Rigid, Safe: Battery Housings Made from Aluminum Foam

Battery housings in electric vehicles must be impact-resistant, absorb crash energy, protect against short circuits, and be heat-resistant. Efficient heat dissipation is essential, but cells also need protection from excessive cooling. The housing must resist damage from stones and salt, fit the vehicle's underbody, add rigidity, and, being lightweight, help increase range. Aluminum foam satisfies these requirements.

At the Battery Show North America in early October in Detroit, the Fraunhofer IWU and the automotive supplier Amsted Automotive presented an integrally designed battery housing with aluminum foam sandwiches. This is a special material structure consisting of two solid aluminum sheets enclosing an inner core of aluminum foam. Such housings can, if needed, incorporate a cooling structure or a thermal storage medium known as Phase Change Material (PCM), which stores or releases heat as it changes between solid and liquid states.

Fraunhofer IWU has successfully integrated PCM into closed-cell aluminum foam. PCM can absorb or release large amounts of thermal energy while changing its state (solid to liquid or vice versa) without significantly altering its own temperature. This makes them particularly well-suited for efficient thermal management in lithium-ion batteries. The demonstrator presented in Detroit shows a wide range of possible serial solutions. Depending on the prioritized properties, pure AAS (Aluminum-Aluminum Foam Sandwiches), AAS with infiltrated PCM, AAS with a cooling structure, or AAS with a cooling structure and PCM can be implemented.

To ensure that battery housings made from aluminum foam are also used in mass-produced vehicles, researchers led by Dr. Thomas Hipke and Dr. Rico Schmerler are now focusing more on cost-effectiveness. A key factor in determining future manufacturing prices is the cost of raw materials. Hipke states: "We are increasingly using recycled material to produce the aluminum foam. Not only is this significantly more cost-effective, but it also greatly reduces the CO2 footprint."

FRAUNHOFER IWU

Fig. 1 Options for housing structures. From left to right in the four chambers: pure AAS, AAS with infiltrated PCM, AAS with cooling structure, and AAS with cooling structure and PCM.

© Fraunhofer IWU

November 4, 2025 || Page 2 | 2

Fig. 2 Aluminum foam sandwich structure.

© Fraunhofer IWU

Fig. 3 Dr. Rico Schmerler (left) and Dr. Thomas Hipke at the Battery Show North America.
© Fraunhofer IWU

The **Fraunhofer Institute for Machine Tools and Forming Technology IWU** is an innovation-driven partner for research and development in production engineering. Around 670 highly qualified employees work at our locations in Chemnitz, Cottbus, Dresden, Leipzig, Wolfsburg, and Zittau. We unlock potential for competitive manufacturing, across industries like automotive, aerospace, electrical engineering, and precision engineering. Our research and contract research encompass the entire manufacturing ecosystem, from individual components to processes, methods, complex machine systems and human interaction. As one of the leading institutes for resource-efficient manufacturing, we bank on highly flexible, scalable cognitive production systems using nature as an example. We take a holistic approach to the entire process chain, aligning with circular economy principles. We develop technologies and intelligent production plants and optimize forming, cutting, and joining manufacturing steps. Our services include innovative lightweight structures and technologies for processing new materials, functional transfer to assembly groups, and the latest technologies of additive manufacturing (3D printing). We provide solutions for climate-neutral factory operations and large-scale production of hydrogen systems, thus paving the way for the transition to renewable energies.