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Frequently Asked Questions (FAQs) 

This document provides information about the study: 

Karlsson Linnér et al. 2019. “Genome-wide association analyses of risk tolerance and risky 
behaviors in over one million individuals identify hundreds of loci and shared genetic 
influences.” Nature Genetics, in press. 

The document was prepared by several of the study’s coauthors and draws from and builds on the 
FAQs for earlier SSGAC papers. It has the following sections:  

1. Background
2. Study design and results
3. Social and ethical implications of the study
4. Appendices

For clarifications or additional questions, please contact Jonathan P. Beauchamp 
(jonathan.pierre.beauchamp@gmail.com). 
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1 Background 

1.1 Who conducted this study? What is the group’s overarching goal? 

The authors are members of the Social Science Genetic Association Consortium (SSGAC). The 
SSGAC is a multi-institutional, multi-disciplinary, international research group that aims to 
identify statistically robust links between genetic variants (for instance, base-pairs of DNA that 
vary across people) and phenotypes of interest to social scientists. A “phenotype” refers to 
anything that may be influenced by DNA, such as disease risk or physical characteristics. The 
phenotypes of interest to social scientists include behaviors, preferences, personality traits, and 
socioeconomic outcomes. 
The SSGAC was formed in 2011 to overcome a specific set of scientific challenges. As is now 
well understood (Chabris et al. 2015), most phenotypes—including virtually all social-science 
phenotypes—are influenced by hundreds or thousands of genetic variants. Although in 
combination their collective effects can be sizeable, almost every one of these genetic variants has 
an extremely small effect on its own. To reliably identify these individual variants, therefore, 
scientists must study large samples; typically, hundreds of thousands of individuals are required. 
One approach to obtaining a large enough sample is for many research groups to pool analyses of 
their data into a single, large study. This approach has borne considerable fruit when used by 
medical geneticists interested in a range of diseases and conditions (Visscher et al. 2017a). Most 
of these advances would not have been possible without large research collaborations between 
multiple research groups interested in similar questions. The SSGAC was formed in an attempt by 
social scientists to adopt this research model.  

The SSGAC is organized as a working group of the Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE), a successful medical consortium. It was founded by three 
social scientists—Daniel Benjamin (University of Southern California), David Cesarini (New 
York University), and Philipp Koellinger (Vrije Universiteit Amsterdam)—who believed that 
genetic data could have a substantial positive impact on research in the social sciences, and that 
social-science genetics could make important contributions to medical research. The Advisory 
Board for the SSGAC is composed of prominent researchers representing various disciplines: 
Dalton Conley (Sociology, New York University), George Davey Smith (Epidemiology, 
University of Bristol), Tõnu Esko (Molecular Genetics, Broad Institute and Estonian Genome 
Center), Albert Hofman (Epidemiology, Harvard University), Robert Krueger (Psychology, 
University of Minnesota), David Laibson (Economics, Harvard University), James Lee 
(Psychology, University of Minnesota), Sarah Medland (Statistical Genetics, QIMR Berghofer 
Medical Research Institute), Michelle Meyer (Bioethics, Geisinger Health System), and Peter 
Visscher (Statistical Genetics, University of Queensland). 

The SSGAC is committed to the principles of reproducibility and transparency. Prior to conducting 
genetic association studies, power calculations are carried out to determine the necessary sample 
size for the analysis (assuming realistically small effect sizes associated with individual genetic 
variants). These, together with an analysis plan, are often preregistered on the Open Science 
Framework (OSF)a. Major SSGAC publications are usually accompanied by a FAQ document 

a The analysis plan for the article “Genome-wide study identifies 611 loci associated with risk tolerance and risky 
behaviors” can be downloaded here: https://osf.io/cjx9m/. 
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(such as this one). The FAQ document is written to communicate to journalists and the public what 
was found and what can and cannot be concluded from the research findings. 

The SSGAC’s first major project was a genome-wide association study (GWAS) of educational 
attainment published in Science (Rietveld et al. 2013b). The study is summarized in a FAQ posted 
on the SSGAC website (https://www.thessgac.org/faqs). The study was followed by two related 
studies, using successively much larger samples, published in Nature (Okbay et al. 2016b) and 
Nature Genetics (Lee et al. 2018). Subsequent SSGAC papers have studied subjective well-being, 
depressive symptoms, the personality trait neuroticism, cognitive performance, and reproductive 
behavior. These papers have been published in Nature Genetics (Barban et al. 2016, Okbay et al. 
2016a), Proceedings of the National Academy of Sciences (Rietveld et al. 2013a, 2014b), and 
Psychological Science (Chabris et al. 2012, Rietveld et al. 2014a), among other journals. The 
present study is the SSGAC’s first study that focuses on the genetics of general risk tolerance. 

1.2 The current study focuses on a variable called “general risk tolerance.” What is 
general risk tolerance? 
Risk pervades many aspects of human life and is a central concept in the study of decision-making 
and behavior. Somewhat surprisingly, then, there is no universally agreed-upon definition of 
“risk.” For our purposes, we define “risk” as the degree of variability in possible outcomes, and 
“risk tolerance” as a person’s willingness to choose options that entail more risk, typically to have 
the chance of obtaining a more rewarding outcome. For example, an engineer with a high degree 
of risk tolerance would be more willing to quit her job at a stable, large corporation and join a risky 
start-up. An individual with a high degree of risk tolerance may also be more likely to drive faster 
than the speed limit on a highway, thus incurring a higher risk of having an accident or a traffic 
ticket in order to save time.  

An individual’s risk tolerance typically varies across domains of behavior. For instance, an 
individual may be willing to take relatively more risks in the career and financial domains, but not 
in the health and leisure domains. Nonetheless, individuals with greater risk tolerance in one 
domain are statistically more likely to exhibit greater risk tolerance in other domains as well. For 
this reason, survey-based measures of general risk tolerance—defined as a person’s general 
willingness to take risks—have been used as all-around predictors of risky behaviors such as 
portfolio allocation, occupational choice, smoking, drinking alcohol, and starting one’s own 
business (Beauchamp et al. 2017, Dohmen et al. 2011, Falk et al. 2015). In our study, we analyze 
a measure of general risk tolerance based on responses to questions such as: “Would you describe 
yourself as someone who takes risks? Yes / No.” The exact phrasing and number of response 
categories varied across the study cohorts, but all questions asked subjects about their overall or 
general attitudes toward risk.  

1.3 What was already known about the genetics of risk tolerance prior to this study? 

Researchers have found that identical twins (who share all of their genes) tend to be more similar 
to one another in terms of their risk tolerance than fraternal twins (who share, on average, only 
half of their genes), which suggests that genetic factors influence risk tolerance. With some 
assumptions, it is possible to translate the greater similarity of identical twins into an estimate of 
the “heritability” of risk tolerance. The heritability of risk tolerance is the percentage of the 
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variation in risk tolerance among individuals that can be accounted for statistically by genetic 
differences, given current environmental conditions. Estimates from twin studies suggest that risk 
tolerance is moderately heritable (~30%) (Beauchamp et al. 2017, Cesarini et al. 2009, Harden et 
al. 2017). We note, however, that such estimates are based on several assumptions and vary across 
studies, in part because different studies use different measures of risk tolerance as well as different 
assumptions and methods. 

As we further discuss in FAQ 2.2, the current study also estimated the “SNP heritability” of risk 
tolerance, which is the percentage of the variation in risk tolerance among individuals that can be 
accounted for statistically by “common SNPs” (a type of genetic variants; see FAQ 2.1 for details), 
given current environmental conditions. Our estimate suggests that common SNPs account for 
only ~5% to 9% of the variation in risk tolerance across individuals. Importantly, while these 
heritability estimates all suggest that genetic factors influence risk tolerance, we emphasize that 
this does not imply that risk tolerance is pre-determined at birth or that genetic factors act 
independently of the environment, as we discuss below in FAQs 3.2 and 3.4.  

Risk tolerance has been one of the most studied phenotypes in social science genetics. To date, 
however, nearly all published studies attempting to discover the genetic variants associated with 
risk tolerance have been “candidate-gene studies” conducted in relatively small samples, ranging 
from a few hundred to a few thousand individuals. A candidate-gene study tests the associations 
between a phenotype of interest and a few selected genetic variants that are hypothesized to be 
associated with the phenotype. Though there is nothing wrong in principle with such studies, we 
now know that the sample sizes of the candidate-gene studies for risk tolerance and other 
behavioral traits were probably too small to robustly identify genetic variantsb (Chabris et al. 2012, 
Hewitt 2012). Indeed, as we explain in FAQ 2.6, we used our own results to assess the evidence 
in favor of the main biological pathways and genetic variants which previous candidate-gene 
studies had hypothesized or reported to relate to risk tolerance. Although our sample was several 
orders of magnitude larger than the samples used in the candidate-gene studies, we found no 
evidence that these biological pathways and genetic variants are associated with risk tolerance.  
To the best of our knowledge, prior to our study there had only been two studies with samples that 
were large enough to provide sufficient statistical power to robustly detect genetic variants with 
small effect sizes (Day et al. 2016, Strawbridge et al. 2018). From these studies, only two genetic 
variants associated with risk tolerance had been identified. 
In summary, when our study was initiated, despite much interest, little was known about which 
genetic variants are related to risk tolerance. 

2 Study design and results 

2.1 What did you do in this paper? How was the study designed? 
We performed the largest-to-date genome-wide association study (GWAS) of risk tolerance. In a 
GWAS, scientists look across the human genome for genetic variants that are associated with a 
phenotype of interest. If a genetic variant is associated, then individuals who have a certain “allele” 

b As mentioned above, it is now well established that the bulk of the genetic variation in the vast majority of behavioral 
phenotypes is attributable to a large number of genetic variants, each having a very small effect (Chabris et al. 2015). 
For that reason, large samples are needed to detect individual genetic variants. 
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(i.e., a certain version of that variant) are more likely than those with a different allele to exhibit a 
phenotype (in this case, higher general risk tolerance).  

We chose a GWAS study design because it has been a successful research strategy for identifying 
genetic variants associated with many traits and diseases, including body height (Wood et al. 
2014), BMI (Locke et al. 2015), Alzheimer’s disease (Lambert et al. 2013), and schizophrenia 
(Ripke et al. 2014). GWAS have also recently been used to identify genetic variants associated 
with a variety of health-relevant social science outcomes, such as the number of children a person 
has (Barban et al. 2016), happiness (Okbay et al. 2016a, Turley et al. 2018), and educational 
attainment (Okbay et al. 2016b, Rietveld et al. 2013b). Furthermore, scientists who have attempted 
to replicate reported GWAS associations in independent samples of sufficiently large size have 
typically been successful (Visscher et al. 2017b), thereby indicating that GWAS associations are 
robust findings.  

In our GWAS of general risk tolerance, we tested ~9.3M single nucleotide polymorphisms (SNPs) 
from across the human genome for association with general risk tolerance. SNPs are the most 
common type of genetic variant in the genome and are the genetic variants that are captured by the 
genetic data used in our study and most other modern genome-wide association studies. (There are 
other types of genetic variants, which we did not analyze.) Some SNPs have alleles that are 
relatively common in the population and are called “common SNPs,” while other SNPs have one 
allele that is rare in the population; our GWAS analyzed both common SNPs and some rare SNPs. 
As mentioned above, genetic variants associated with social-science phenotypes tend to have very 
small individual effects on the phenotypes. Therefore, in order to have sufficient statistical power 
to discover SNPs associated with risk tolerance, we pooled the results from analyses of two very 
large datasets, the UK Biobank (n = 431,126 individuals) and a dataset of research participants 
from 23andMe (n = 508,782 individuals), thereby yielding a “discovery” sample of 939,908 
individuals. We replicated the findings from this discovery sample in a “replication” sample 
comprised of ten smaller datasets and totaling 35,445 individuals. In all of these samples, to avoid 
the statistical confounding that arises from studying ethnically diverse populations, we restricted 
our GWAS to individuals of European ancestries. (For a somewhat technical explanation, see 
Appendix 1.) 
We used the results of our GWAS of general risk tolerance for a wide range of additional analyses. 
For example, to examine the extent to which SNPs that are associated with risk tolerance also tend 
to be associated with other phenotypes, we estimated “genetic correlations” between risk tolerance 
and a wide range of phenotypes (see FAQ 2.3). In addition, in several samples of genotyped 
individuals, we used individuals’ SNP data and the results of our GWAS to construct “polygenic 
scores” that partially predict individuals’ risk tolerance based on their SNP data (see FAQ 2.4). 
We also performed a suite of bioinformatics analyses to get insight into the biology of risk 
tolerance (see FAQs 2.5 and 2.6). 
In addition to our GWAS of general risk tolerance, we conducted six supplementary GWAS, of 
six phenotypes related to risk tolerance and risk-taking behaviors. We conducted a GWAS of 
“adventurousness,” defined as the self-reported tendency to be adventurous vs. cautious. We also 
conducted GWAS of four risky behaviors that each plausibly capture risk taking in a different 
domain of behavior: “automobile speeding propensity” (the tendency to drive faster than the speed 
limit), “drinks per week” (the average number of alcoholic drinks consumed per week), “ever 
smoker” (whether one has smoked more than once or twice), and “number of sexual partners” (the 



 7 

lifetime number of sexual partners). Finally, we conducted a GWAS of the first principal 
component of the four risky behaviors. (The first principal component is a variable that captures 
the common variation across the four risky behaviors and can be interpreted as capturing the 
general tendency to take risks across domains.) Section 1.2 of our article’s Supplementary 
Information provides more detail on the definitions of these phenotypes. The analyses of the six 
supplementary phenotypes were performed in samples ranging from ~315,000 to ~557,000 
individuals. These samples were smaller because of more limited data availability for these 
phenotypes.  

  
2.2 What did you find in the GWAS? 

Our main GWAS identified 124 SNPs associated with general risk tolerance in our discovery 
sample. The 124 SNPs are located in 99 “loci” (a locus is a small region of the genome). As 
expected, the estimated individual effects of the 124 SNPs are all very small: none of the SNPs 
explain more than 0.02% of the variation in general risk tolerance across individuals.  

We verified that the 124 SNPs identified in our discovery sample also tend to be associated with 
general risk tolerance in our replication sample. Because the replication sample was not large 
enough to provide adequate statistical power to replicate the associations of each of the 124 SNPs 
individually, we performed a “holistic” replication analysis. This analysis compares the overall 
agreement in estimates for the 124 SNPs across the discovery and the replication GWAS. This 
holistic replication was successful, indicating that it is highly unlikely that the results from our 
discovery sample were driven by chance alone.  
We also estimated the “SNP heritability” of risk tolerance. The SNP heritability of a phenotype is 
the share of the variation in the phenotype that is statistically accounted for by common SNPs, 
given current environmental conditions (see FAQ 1.3). We used several methods to obtain our 
estimates. With all methods, we used a set of common SNPs—that is, SNPs that have alleles that 
are relatively common in the population—to estimate the heritability. Because the different 
methods make different assumptions and because we applied the different methods to slightly 
different data, the methods yielded different heritability estimates. Our estimates suggest that 
common SNPs account for ~5% to 9% of the variation in risk tolerance across individuals. (The 
true heritability of risk tolerance is likely to be somewhat higher, since other genetic variants, such 
as rare SNPs and structural genetic variants, are likely to also contribute to variation in risk 
tolerance.)  

Our six supplementary GWAS (of the phenotypes related to risk tolerance and risk-taking 
behaviors) identified a total of 741 associations between a specific SNP and one of the phenotypes. 
Because of the lack of suitable replication samples, we did not perform replication analyses for the 
GWAS of these six phenotypes. 

 
2.3 Are the SNPs associated with higher risk tolerance in your study also associated with 
other phenotypes? 
Yes. Of the 124 SNPs we identified as associated with general risk tolerance, we found that 72 are 
also associated with one or more of the six supplementary phenotypes related to risk tolerance and 
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risk-taking behaviors.c We also identified several regions of the genome that stood out as being 
associated with general risk tolerance and with all or most of the six supplementary phenotypes. 
We verified that the effects of the SNPs in these regions are concordant, such that SNPs associated 
with higher general risk tolerance are also associated with more risky behavior. This suggests that 
these regions represent shared genetic influences on risk tolerance and risky behaviors (rather than 
just being genomic hot spots containing SNPs associated with many different phenotypes). 

In addition, we estimated the “genetic correlation” between general risk tolerance and various 
other phenotypes. The genetic correlation between two phenotypes is a measure of the extent to 
which the SNPs that affect one phenotype also tend to affect the other phenotype. We found that 
general risk tolerance is moderately to highly genetically correlated with a range of risky 
behaviors. General risk tolerance is genetically correlated with the six supplementary phenotypes 
(which capture various types of risky behavior), with estimates of the genetic correlations ranging 
from 0.25 to 0.83. General risk tolerance is also moderately to highly genetically correlated with 
a number of additional risky behaviors, including cannabis use and self-employment. Importantly, 
the direction of the genetic correlations is in the expected direction, with higher risk tolerance 
being associated with riskier behavior. Moreover, our estimates of the genetic correlations between 
general risk tolerance and the supplementary risky behaviors are substantially higher than the 
corresponding phenotypic correlationsd, implying that general risk tolerance is more strongly 
associated with these risky behaviors at the genetic level than at the non-genetic (environmental) 
level. The relatively high genetic correlations between general risk tolerance and risky behaviors 
suggests the existence of a genetically-influenced “general factor of risk tolerance” that captures a 
general tendency to take risk across domains of behavior.  

We also found that risk tolerance is moderately genetically correlated with several personality and 
neuropsychiatric phenotypes. Of note, the estimated genetic correlations with the personality traits 
extraversion (𝑟" = 0.51e), neuroticism (𝑟" = –0.42), and openness to experience (𝑟" = 0.33) are 
highly statistically significant and are substantially larger in magnitude than previously reported 
phenotypic correlations, pointing to shared genetic influences among general risk tolerance and 
these personality traits. We also found statistically significant and positive genetic correlations 
between general risk tolerance and the neuropsychiatric phenotypes ADHD, bipolar disorder, and 
schizophrenia.  
 

2.4 How much of a particular person’s risk tolerance can be predicted from the results 
of this paper? 

Although each individual SNP has a very small effect, the GWAS estimates of the SNPs’ (very 
small) effects can be combined to create a “polygenic score,” an index that takes into account the 
effects of many SNPs from across the genome. Because a polygenic score aggregates the 
information from many SNPs, it can predict far more of the variation in risk tolerance among 
individuals than any single SNP. We found that polygenic scores constructed using the results of 

                                                             
c Equivalently, as we write in the abstract of the paper, of the 99 loci referred to above and that contain the 124 SNPs 
associated with general risk tolerance, 46 also contain one or more SNPs associated with at least one of the six 
supplementary phenotypes. 
d Although measurement error partly accounts for the lower phenotypic correlations, the genetic correlations remain 
considerably higher even after adjustment of the phenotypic correlations for measurement error. 
e “𝑟"” denotes a genetic correlation estimate. 
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our GWAS of general risk tolerance explain up to ~1.6% of the variation across individuals in 
general risk tolerance. While 1.6% is far larger than the amount of variation explained by 
individual SNPs (less than 0.02%, as noted above), it is small in absolute terms. As we explain in 
FAQ 3.3, such polygenic scores cannot be used to meaningfully predict a particular person’s risk 
tolerance. 
The predictive power of the polygenic scores is so small partly because our estimates of the SNPs’ 
effect sizes are relatively imprecise. As the available sample sizes for GWAS get larger, estimates 
of the SNPs’ effect sizes will become more precise, and the scores’ explanatory power will rise; 
in theory, if environmental conditions remain the same, it should be possible one day to construct 
a polygenic score whose explanatory power is close to the heritability of risk tolerance. For 
example, a score constructed using the set of common SNPs we used to estimate the ~5% to 9% 
SNP heritability of risk tolerance (see FAQ 2.2), may ultimately explain ~5% to 9% of the variation 
in risk tolerance across individuals. 
Although the polygenic scores we constructed have too little explanatory power to usefully predict 
any individual’s risk tolerance, they have sufficient explanatory power to be useful in social 
science studies, which focus on average or aggregated behavior in the population (not individual 
outcomes). Indeed, with 80% statistical power (the conventional threshold for adequate power), 
the effect of our polygenic scores can be detected in a study with 500 individuals. Therefore, the 
polygenic scores provided by our study can be useful in social science studies that have at least 
500 participants and in which the participants’ genomes have been measured. (Several datasets 
commonly used in social science research meet these criteria.) 
 

2.5 What do your results tell us about human biology and brain development? 
To gain insights into the biological mechanisms through which genetic variation influences general 
risk tolerance, we conducted a suite of bioinformatics analyses. Our bioinformatics analyses point 
to the involvement of the neurotransmitters glutamate and GABA, which were heretofore not 
generally believed to play a role in risk tolerance. Glutamate is the most abundant neurotransmitter 
in the body and plays an excitatory role (i.e., when one neuron secretes it onto another, the second 
neuron is more likely in turn to transmit its own signal). GABA, by contrast, is the main inhibitory 
transmitter. To our knowledge, with the exception of a recent study (Lee et al. 2018) prioritizing a 
much larger number of pathways, no published large-scale GWAS of cognition, personality, or 
neuropsychiatric phenotypes has pointed to clear roles both for glutamate and GABA. Our results 
suggest that the balance between excitatory and inhibitory neurotransmission may contribute to 
variation in general risk tolerance across individuals. 

Perhaps unsurprisingly, our bioinformatics analyses point to a role for the brain and the central 
nervous system in modulating risk tolerance. Specifically, our analyses point to the involvement 
of some brain regions that have previously been identified in neuroscientific studies on decision-
making, including the prefrontal cortex, basal ganglia, and midbrain.  

 
2.6 How do your results relate to previous research on the genetics of risk tolerance 

As mentioned above in FAQ 1.3, risk tolerance has been one of the most studied phenotypes in 
social science genetics. However, almost all previous studies have been “candidate-gene studies” 
conducted in relatively small samples, whose limitations are now appreciated.  



 10 

We used the results of our GWAS to revisit this previous research. We reviewed the literature that 
aimed to link risk tolerance to biological pathways, and identified five main biological pathways 
that have been previously hypothesized to relate to risk tolerance: the steroid hormone cortisol, the 
monoamine neurotransmitters dopamine and serotonin, and the steroid sex hormones estrogen and 
testosterone. We then tested whether these five biological pathways relate to risk tolerance 
To understand how we tested these five biological pathways, it is helpful to first define what a 
gene is. A “gene” is a sequence of DNA in the genome that codes for a molecule that has a 
biological function. The human genome has roughly 20,000 to 25,000 genes; although genes 
comprise only about 1% to 2% of human genome, they have important biological functions. Genes, 
like other parts of the genome, can contain SNPs.  

To test the five biological pathways for association with risk tolerance, thus, we first used external 
databases created by other researchers to identify the genes that are involved, or are likely to be 
involved, in each of these five pathways. Then, we conducted various bioinformatics analyses that 
used the results of our GWAS and tested the hypothesis that SNPs located in the genes involved 
in each of the five pathways tend to be more strongly associated with general risk tolerance than 
other SNPs. We found no evidence in support of that hypothesis, suggesting that the five pathways 
are not particularly important contributors to individual variation in risk tolerance.  
We also used our GWAS results to examine whether SNPs located within (or highly correlated 
with) 15 specific genes, which previous candidate-gene studies had tested for association with risk 
tolerance, are indeed associated with risk tolerance. Our sample was several orders of magnitude 
larger than the samples used in the previous candidate-gene studies (as mentioned above in FAQ 
1.3, these studies were conducted in relatively small samples). Despite this, we found no evidence 
that these 15 genes are associated with risk tolerance, and failed to replicate the main associations 
the previous candidate-gene studies had reported. Our results are consistent with other studies that 
have found that small-sample candidate-gene studies have a poor replication record (Chabris et al. 
2012, Hewitt 2012).  

We also note that our discovery GWAS replicated the associations between general risk tolerance 
and the two SNPs that had previously been found to be associated with general risk tolerance in 
the two previous studies with large samples (Day et al. 2016, Strawbridge et al. 2018; see FAQ 
1.3). This is not surprising, however, since those two studies analyzed data from the UK Biobank, 
and the UK Biobank is one of the two large datasets we included in our discovery GWAS. 
In summary, instead of pointing to the main genetic variants and biological pathways that had 
previously been hypothesized to relate to risk tolerance, our analyses identified 124 SNPs 
associated with risk tolerance (see FAQ 2.2), and point to the involvement of the neurotransmitters 
glutamate and GABA and of several brain regions (see FAQ 2.5). 
 

3 Social implications of the study 

3.1 Did you find “the gene for” (or “the genes for”) risk tolerance? 
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No. We did find several genesf containing SNPs associated with general risk tolerance, but that 
does not mean that these genes determine general risk tolerance. The genetic factors we identified 
are involved in a long chain of biological processes that exert an influence on human behavior, 
and those processes are intricately entwined with the environment.  

In summary, our findings conform with the expectation that variation in risk tolerance across 
individuals is influenced by at least thousands, if not millions, of genetic variants (Chabris et al. 
2015). 
 

3.2 Does this study show that an individual’s level of risk tolerance is determined and 
fixed at conception? 

No. A large share of the variation in risk tolerance among individuals is determined by 
environmental factors, and environmental factors may also interact with genetic factors. As 
mentioned in FAQ 1.3, twin studies have found that part of the variation in risk tolerance across 
individuals is statistically accounted for by genetic factors. But even if all of the variation in risk 
tolerance at a certain point in time were accounted for by genetic factors (which is definitely not 
the case), this would not rule out the possibility of past or future environmental influences on risk 
tolerance. For instance, even if poor eyesight were perfectly heritable and hence completely 
determined by genetic factors (it is not), the invention of eye glasses, contact lenses, and laser 
surgery would all drastically improve a person’s poor genetic outlook for clear vision. On the flip 
side, environmental trauma (e.g., a poke to the eye) could drastically worsen another individual’s 
genetic outlook for clear vision. The lesson of eyesight as a phenotype is that heritability of a 
phenotype—even 100% heritability—does not imply biological determinism: environmental 
factors can still in principle influence the phenotype. And again, risk tolerance is far from being 
perfectly heritable. 

 
3.3 Can you use the results in this paper to meaningfully predict a particular person’s 
risk tolerance? 
No, the results cannot be used to meaningfully predict either a particular person’s general risk 
tolerance, nor their likelihood of taking any particular risk and engaging in any particular sort of 
risky behavior. As mentioned in FAQ 2.4, we used the results of our GWAS of general risk 
tolerance to construct polygenic scores that can explain up to ~1.6% of the variation across 
individuals in general risk tolerance. That means that ~98.4% of the variation in general risk 
tolerance is explained by factors other than the polygenic scores.  
As we also mentioned in FAQ 2.4, we expect that future, larger GWAS will allow the construction 
of polygenic scores with higher predictive power. However, the predictive power of such scores 
would still pale in comparison to some other scientific predictors. For example, professional 
weather forecasts correctly predict about 95% of the variation in day-to-day temperatures. Weather 
forecasters are therefore vastly more accurate forecasters than social science geneticists will ever 
be. 

                                                             
f As mentioned in FAQ 2.6, a gene is a sequence of DNA in the genome that codes for a molecule that has a biological 
function; genes, like other parts of the genome, can contain SNPs. 
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We also note that, while the polygenic scores we constructed can’t usefully predict any individual’s 
risk tolerance, they can be useful in social science studies, which focus on aggregated behavior in 
the population.  
 

3.4 Can environmental factors modify the effects of the specific SNPs you identified? 
It is a plausible hypothesis that environmental factors are both moderators and mediators of genetic 
influences on risk tolerance. For example, it is conceivable that some SNPs have allelesg that tend 
to make individuals relatively less risk tolerant, but only when the individuals are exposed to 
certain environments (e.g., when they experience a traumatic episode). (Such environments factors 
would be said to “moderate” the influence of those SNPs.) It is also conceivable that some SNPs 
affect risk tolerance indirectly, by influencing individuals’ preferences for certain environments 
(e.g., by influencing their preferences for socializing with quiet, cautious friends), which may in 
turn affect their risk tolerance. (Such environments would be said to “mediate” the influence of 
those SNPs.)   

We did not perform any statistical tests of “gene-environment interactions” in our study. (Gene-
environment interactions refer to the moderation of genetic influences by environmental factors.) 
One promising approach for future studies that seek to identify gene-environment interactions will 
be to use our GWAS results to construct polygenic scores of general risk tolerance, and then test 
whether environmental or demographic variables moderate the association between the polygenic 
scores and an outcome of interest.  

To facilitate such research, we have made the summary results of our GWAS publicly available 
on the SSGAC’s website (www.thessgac.org); interested researchers who have access to datasets 
with genotypic data can download these results and use them to construct polygenic scores. 
 

3.5 What policy lessons or practical advice do you draw from this study? 
None whatsoever. Any practical response—individual or policy-level—to this or similar research 
would be extremely premature. In this respect, our study is no different from genome-wide 
association studies (GWAS) of complex medical outcomes. In medical GWAS research, it is well 
understood that identifying genetic variants that affect disease risk is merely a first step toward 
understanding the underlying biology of that disease. It is not sufficient to assess risk for any 
specific individual. It is not appropriate to base policies and practices on such assessments. 
 

3.6 Could this kind of research lead to discrimination against, or stigmatization of, people 
with specific genetic variants? If so, why conduct this research? 

Unfortunately, like a great deal of research—including, for instance, research identifying genetic 
variants associated with increased cancer risk—the results can be misunderstood and could be 
misapplied, including by being used to discriminate against individuals with specific genetic 
variants (e.g., in insurance markets). Nevertheless, for a variety of reasons, we do not think that 

                                                             
g As mentioned above, an allele is a certain version of a genetic variant. 
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the best response to the possibility that useful knowledge might be misused is to refrain from 
producing the knowledge. 

First, even if we believed that some knowledge (and specifically knowledge about genetic 
influences on risk-taking behavior) should be forbidden, that goal is unattainable. Behavioral 
genetics research, including studies of the relationships between genes and a variety of social-
science phenotypes, including risk tolerance, is already being conducted by many scientists and 
other individuals around the world and will continue to be conducted. Not all of this work involves 
the use of appropriate scientific methods or the transparent communication of results. In this 
context, researchers who are committed to developing, implementing, and spreading best practices 
for conducting and communicating potentially controversial research, including behavioral 
genetics research, arguably have an ethical responsibility to participate in the development and 
dissemination of this body of knowledge—rather than abstain from it because of its sensitive 
nature.  
An important theme in our earlier work has been to point out that most existing studies in social-
science genetics that report genetic associations with behavioral traits have serious methodological 
limitations, fail to replicate, and are likely to have false-positive findings (Beauchamp et al. 2011, 
Benjamin et al. 2012, Chabris et al. 2012, 2015). This same point was made in an editorial in 
Behavior Genetics (the leading journal for the genetics of behavioral traits), which stated that “it 
now seems likely that many of the published [behavior genetics] findings of the last decade are 
wrong or misleading and have not contributed to real advances in knowledge” (Hewitt 2012). 
Consistent with this, the current study was unable to replicate the results of previous candidate-
gene studies of risk tolerance (see FAQ 2.6). One of the most important reasons why earlier work 
has generated unreliable results is that the sample sizes were far too small, given that the true 
effects of individual genetic variants on behavioral traits are tiny.  

Second, one should not assume that behavioral genetics research carries only the potential to 
increase stigmatization. For instance, behavioral phenotypes such as general risk tolerance are 
often assumed to be fully and equally within the control of every individual. That view of these 
behaviors likely contributes to a lack of sympathy for those who exhibit a self-destructive level of 
risk-taking and, perhaps, suboptimal support for programs that attempt to reduce such behavior. 
Our purpose here is not to advocate for or against any particular policy for addressing risk 
behaviors; rather, we mean only to point out that a finding that genes do have some influence can 
reduce, rather than increase, stigma of those who exhibit risk-tolerant or even risk-seeking 
behavior.  
Third, behavioral genetics research has the potential to yield other benefits, especially as sample 
sizes continue to increase. Foregoing this research necessarily entails foregoing these and any other 
possible benefits, some of which will likely be the result of serendipity rather than being 
foreseeable. For instance, identifying variants associated with risk tolerance may lead to insights 
regarding the underlying biological pathways. To take an example from medicine, genetic variants 
in the LMTK2 (lemur tyrosine kinase 2) gene have small effects on an individual’s predisposition 
to prostate cancer. Nonetheless, knowing that this gene is involved can point scientists toward 
studying what the gene does, which may end up teaching us something critical about the pathology 
of prostate cancer. The effect from modifying a biological pathway, e.g., with a pharmaceutical, is 
potentially much larger than the effect of the gene itself. Moreover, although we are not quite there 
yet, when many genetic variants taken together capture ~10% of the variation across individuals 
in risk tolerance, this amount of predictive power (while still too low to be relevant for individual 
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predictions) will be useful for controlling for genetic factors when studying the effect of a policy 
or program on an outcome that is also affected by risk tolerance. For example, when studying a 
policy intervention that aims to reduce the use of illicit substances that present health risks, 
controlling for as many factors as possible, including genetic factors associated with risk taking, 
can help generate more precise estimates of the effectiveness of the policy. 
In sum, the potential benefits of this research, when conducted responsibly, seem reasonable in 
relation to the risks, especially considering that this research is already being conducted, 
sometimes with lesser attention to both scientific rigor and thoughtful science communication. We 
thus agree with the U.K. Nuffield Council on Bioethics, which concluded in a report (Nuffield 
Council on Bioethics 2002, p. 114) that “research in behavioural genetics has the potential to 
advance our understanding of human behaviour and that the research can therefore be justified,” 
but that “researchers and those who report research have a duty to communicate findings in a 
responsible manner.” In our view, responsible behavioral genetics research includes sound 
methodology and analysis of data; a commitment to publish all results, including any negative 
results; and transparent, complete reporting of methodology and findings in publications, 
presentations, and communications with the media and the public, including particular vigilance 
regarding what the results do—and do not—show (hence, this FAQ document). 
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4 Appendices  

Appendix 1: Quality control measures 

There are many potential pitfalls that can lead to spurious results in genome-wide association 
studies (GWAS). We took many precautions to guard against these pitfalls. 

One potential source of spurious results is incomplete “quality control (QC)” of the genetic data. 
To avoid this problem, we used state-of-the-art QC protocols from medical genetics research 
(Winkler et al. 2014). We supplemented these protocols by a more recent protocol from Okbay et 
al. (2016a), as well as by developing and applying additional, more stringent QC filters. 

Another potential source of spurious results is a confound known as “population stratification” 
(e.g., Hamer & Sirota 2000). To illustrate, suppose we were conducting a GWAS of height. People 
from Northern Europe are on average taller than people from Southern Europe, and there are also 
small differences in how often certain genetic variants occur in Northern and Southern Europe. If 
we combine samples of Northern and Southern Europeans and perform a GWAS that ignores the 
regions the individuals come from, then we would find genetic associations for these variants. 
However, those associations would simply reflect the fact that the variants are correlated with a 
population (Northern or Southern Europe) and may actually have nothing to do with height. 

In our study we were extremely careful to avoid population stratification as much as possible. At 
the outset, we restricted the study to individuals of European ancestries, since population 
stratification problems are more severe when including individuals of different ancestries in the 
same sample. As is standard in GWAS of medical outcomes, we controlled for “principal 
components” of the genetic data in the analysis; these principal components capture the small 
genetic differences across populations, so controlling for them largely removes the spurious 
associations arising solely from these small differences.  

After taking these steps to minimize population stratification, we conducted several analyses to 
assess how much population stratification still remained in our data. First, we analyzed data on 
17,684 sibling pairs from the Swedish Twin Registry and the UK Biobank. The key idea 
underlying our test was to examine if differences in genetic variants across siblings are associated 
with differences in the siblings’ risk tolerance. If so, then these associations cannot be the result 
of population stratification. The reason is that full siblings (from the same two biological parents) 
share their ancestry entirely, and therefore differences in their genetic variants cannot be due to 
being from different population groups. Unfortunately, because our sample of siblings is much 
smaller than our discovery GWAS sample (939,908 individuals), our estimates of the effects of 
the genetic variants within the sibling pairs are much less precise than those in the GWAS. 
However, we can test whether the GWAS results are entirely due to population stratification, 
because if they were, then the sibling estimates would not line up with the GWAS estimates at all. 
In fact, we found that the within-family estimates are more similar to the GWAS estimates in both 
sign and magnitude than would be expected by chance. These results imply that our GWAS results 
are not entirely due to population stratification. A second analysis, known as a “LD score 
regression intercept” analysis (Bulik-Sullivan et al. 2015), indicated that there is some, but not 
much, population stratification in our GWAS results.   
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