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HIGHLIGHTS 

GM-CSF+ T cells are a hallmark of severe respiratory syndrome independent of pathogen 

T cell exhaustion and impaired early antiviral response is unique in severe COVID-19 

Circulating NKT cell frequencies serve as a predictive biomarker for severe COVID-19 

HLA profile links COVID-19 immunopathology to impaired virus recognition 

eTOC BLURB 

The pathogen-specific immune alterations in severe COVID-19 remain unknown. Using 

longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided comparison 

of COVID-19 vs. non-SARS-CoV-2-pneumonia patient samples, Kreutmair et al. identify T and 

NK cell immune signatures specific to SARS-CoV-2. They furthermore reveal NKT cell 

frequency as a predictive biomarker for COVID-19 outcome prediction and link impaired virus 

recognition to HLA genetics. 
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SUMMARY  33 

Immune profiling of COVID-19 patients has identified numerous alterations in both innate and 34 
adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven 35 
by a general inflammatory response shared across severely ill pneumonia patients remains 36 
unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-37 
2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry 38 
and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed 39 
increased emergency myelopoiesis and displayed features of adaptive immune paralysis. 40 
However, pathological immune signatures suggestive of T cell exhaustion were exclusive to 41 
COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-42 
CoV-2-petides to the patients’ HLA profile further linked the COVID-19 immunopathology to 43 
impaired virus recognition. Towards clinical translation, circulating NKT cell frequency was 44 
identified as a predictive biomarker for patient outcome. Our comparative immune map serves 45 
to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to 46 
severe COVID-19.  47 
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INTRODUCTION 48 

The coronavirus disease 2019 (COVID-19) pandemic has affected over 50 million people 49 
worldwide and resulted in more than 3 million deaths as of April 2021 (World Health 50 
Organization, 2020a). The causative agent is severe acute RS (RS) coronavirus 2 (SARS-51 
CoV-2) (Lu et al., 2020). The majority of people infected with SARS-CoV-2 are either 52 
asymptomatic or develop mild and self-limiting symptoms of fever, cough and shortness of 53 
breath. However, approximately 8% of COVID-19 patients go on to experience the severe 54 
complications of pneumonia, respiratory failure and acute respiratory distress syndrome 55 
(ARDS), frequently requiring admission to the intensive care unit (ICU) and mechanical 56 
ventilation (Iype and Gulati, 2020; O’Driscoll et al., 2020). Despite some clinical similarities to 57 
other severe respiratory infections causing multi-organ failure, COVID-19 presents unique 58 
clinical challenges that we do not yet know how to overcome: at present, the in-ICU mortality 59 
rate remains at approximately 50% (Armstrong et al., 2020). Thus there is an urgent need to 60 
understand how mild and severe SARS-CoV-2 infection differ from each other, and how they 61 
are distinct from other causes of severe RS. 62 

While the factors underpinning severe COVID-19 are not yet completely understood, evidence 63 
suggests that extreme respiratory distress in these patients is primarily mediated by 64 
immunopathology (Hadjadj et al., 2020; Merad and Martin, 2020). Multiple reports observe 65 
differences in the proportions of immune cell populations in the peripheral blood of COVID-19 66 
patients compared to healthy individuals; in particular a marked lymphopenia that is 67 
accompanied by changes to the lymphocyte activation and exhaustion phenotypes, some of 68 
which are partly associated with severity of the disease (Cao, 2020; Mathew et al., 2020; Su 69 
et al., 2020; Zheng et al., 2020). Alongside these cellular characteristics, a cytokine storm, 70 
defined by a massive increase in circulating levels of inflammatory cytokines including IL-6, 71 
GM-CSF and TNF, drives disease progression and the development of lung immunopathology 72 
(Bastard et al., 2020; Bonaventura et al., 2020; Hadjadj et al., 2020; Lucas et al., 2020; Poland 73 
et al., 2020; Del Valle et al., 2020; Zhang et al., 2020b). However, due to the lack of large well-74 
controlled studies on the immune responses of hospitalized patients with non-COVID-19 75 
critical pneumonias, the extent to which these immune changes are COVID-19-specific or 76 
common to other life-threatening pathogen-induced pneumonias remains unclear. Identifying 77 
those immune phenotypes and processes underlying severe COVID-19 would represent an 78 
important step forward in the rational development of new and more effective ways of treating 79 
this uniquely-challenging disease. 80 

Here, we compared immune profiles in longitudinally collected blood samples from mild and 81 
severe COVID-19 patients, alongside a cohort of critically-ill patients suffering from pneumonia 82 
triggered by non-SARS-CoV-2 pathogens, and HCs. This enabled us to identify immune 83 
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signatures specific to SARS-CoV-2 and those shared with other pathogen-associated severe 84 
RS. Whereas emergency myelopoiesis and adaptive immune paralysis are common features 85 
of RS, signs of T cell exhaustion and reduced cytotoxicity were exclusive to COVID-19. Lastly, 86 
the identification of circulating NKT frequencies as a predictive biomarker for patient outcome 87 
could immediately serve for early patient stratification and decision-making.  88 



 5 

RESULTS 89 

Study participants, sampling protocols and experimental approach 90 

We recruited three cohorts of participants: 57 COVID-19 patients (150 samples) from three 91 
independent centers across Germany (Tuebingen) and France (Toulouse and Nantes). 92 
COVID-19 patients were categorized into six severity grades based on the World Health 93 
Organization’s (WHO) ordinal scale (World Health Organization, 2020b), that subdivides mild 94 
(severity grade 1-3, COVID-19m) and severe (severity grade 4-6, COVID-19s) disease. The 95 
second cohort included 25 patients admitted to the ICU with non-SARS-CoV-2 pneumonia 96 
(Hospital-acquired pneumonia (HAP) next to the third cohort: 21 healthy controls (HCs) (Fig. 97 
1A). For the HAP cohort, all episodes of pneumonia were classified as severe and required 98 
invasive mechanical ventilation. Comprehensive demographic data was collected and is 99 
provided in the Figures S1A and Table S1A and S1B. 100 

COVID-19 patients gave blood samples between days 0 and 96 after their hospital admission 101 
(Table S1C, except one patient assigned to severity grade 1), while HAP patients gave a single 102 
blood sample at 1-4 days post-diagnosis of pneumonia, and HCs also donated once. In case 103 
of COVID-19 patients, the time from infection to hospital admission is on average 6.4 days 104 
(Lauer et al., 2020; Li et al., 2020). In total, we collected 196 blood samples across all cohorts. 105 
Blood samples were processed for full blood counts and standard biochemistry at the clinical 106 
centers, with peripheral blood mononuclear cells (PBMCs) isolated and cryopreserved for later 107 
analysis (Fig. 1A, S1A). 108 

The samples were subjected to high-parametric single cell spectral flow cytometry (Fig. 1A, 109 
S1A, Table S1A). We employed three overlapping antibody panels targeting a range of cell 110 
surface molecules including the SARS-CoV-2 receptor ACE-2 (Table S2A), and cytokines 111 
(after short-term stimulation, Tables S2B and S2C). This immunprofiling approach enabled us 112 
to assess: (1) the overall lymphocyte and myeloid composition of PBMCs; (2) the relative 113 
abundance of T cell subsets and their effector or memory status; (3) levels of B cell 114 
differentiation; (4) levels of Natural killer (NK) cell differentiation; (5) the relative abundance of 115 
monocyte and DC subsets; (6) signs of lymphocyte activation and exhaustion; (7) production 116 
of lymphocyte cytokines; and (8) production of myeloid cytokines. All samples were quality 117 
screened (for details see Material and Methods) leading to the inclusion of 167 PBMC samples 118 
across all cohorts. Using computational data integration based on 50 markers from the 119 
spectral flow cytometry together with 25 clinical measures (e.g. age, sex, Body mass index 120 
(BMI), etc.) as well as HLA typing to ultimately define the severe COVID-19-specific immune 121 
landscape (Table S1A). 122 
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Immunomonitoring reveals differing immune landscapes in COVID-19m, COVID-19s 123 
and HAP patients 124 

To generate an overview of the circulating immune compartment in COVID-19m and COVID-125 
19s patients, we analyzed spectral flow cytometry data using FlowSOM-based clustering (Van 126 
Gassen et al., 2015) combined with UMAP dimensionality reduction (McInnes L  Saul 127 
N,  Großberger L, 2018) (Fig. 1B, S1B, S1C). Comparison of PBMCs from HCs and COVID-128 
19 patients revealed numerous frequency alterations of canonical immune subsets among 129 
CD45+ cells, except CD4+ lymphocytes, NK cells and monocytes which were comparable 130 
across all time points (TPs) (Fig. S1D). Compared to COVID-19m, the severe disease was 131 
characterized by significantly lower frequencies of CD8+ T cells, coupled with higher 132 
frequencies of B cells (Fig. S1D). 133 

We next combined all cytometry parameters of the surface panel (Table S2A) to deeply 134 
phenotype T cell, B cell, NK cell, DC and monocyte subsets from each cohort, assessing their 135 
differentiation and activation state as well as their exhaustion profile. Following data integration 136 
and HAP inclusion, a principal component analysis (PCA) of the resulting immune landscapes 137 
showed a clear segregation of cells from HCs compared to both COVID-19 and HAP groups, 138 
while COVID-19s patients shared signatures both with COVID-19m and HAP patients (Fig. 139 
1C, S1E). Stratification of the COVID-19 cohort data by sex or age did not reveal marked 140 
differences in immune phenotypes (Fig. S1F, S1G). 141 

To uncover the immunological dysregulation of COVID-19s that is distinct from the 142 
inflammatory, infectious immune signatures of HAP, we further enriched our dataset with an 143 
overall lymphoid and myeloid cytokine profile of the different subpopulations (Tables S2B and 144 
S2C). We introduced the statistical measure of the effect size (ES) to combine both 145 
significance and fold change in one single statistical value, as proposed for clinical trials before 146 
(McGough and Faraone, 2009; Sullivan and Feinn, 2012). We computed the ES of the Mann-147 
Whitney U test between the analyzed groups (Fig. 1D). Applying the interpretation of ES by 148 
Cohen (0.1 - 0.3 small effect, >0.3 intermediate and large effect) (Cohen, 1977), we set the 149 
threshold for the comparison of mild versus severe COVID to 0.3. Due to the high number of 150 
features reaching the threshold of 0.3 in the comparison COVID-19s versus HAP, we applied 151 
a more stringent cut-off of 0.4 in order to exclusively filter COVID-19s-specific features. This 152 
revealed that mild and severe COVID-19 exhibit distinct immune signatures (represented by 153 
an ES > 0.3 and seen in the upper part of the dot plot in Fig. 1D), but in addition, COVID-19s 154 
and HAP could be distinguished by a set of immune features (displayed in the upper right 155 
square in Fig. 1D; threshold ES > 0.4 vs. HAP). Immune alterations in severe RS (COVID-19s 156 
and HAP) occurred within the T cell, NK cell, monocyte and DC compartments (Fig. 1E). 157 
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Taken together, COVID-19s presents immune features that are both shared and distinct from 158 
other pneumonia and affect all immune compartments except for B cells. 159 

Shared T cell features between severe pathogen-induced RSs highlight the emergence 160 
of hyperinflammatory and exhausted subsets in COVID-19s 161 

Following selection of the common immunological trajectories shared across severe RS 162 
patients (COVID-19s and HAP) (Fig. 1D, upper left square), we further extracted their dynamic 163 
manifestation in the COVID-19 cohort by correlation to disease severity and analysis over 164 
time. The identified patterns revealed predominantly the T cell compartment (Fig. 2A, 2B, S2A, 165 
S2B, Table S3). The reduction in CD4- CD8- (TCRgd enriched) T cell frequency appeared to 166 
be progressive, reaching its lowest during the second week of hospitalization (TP 3 (day 6-9)) 167 
(Fig. 2C). Moreover, we observed significantly higher expression levels of PD-1 in COVID-19s 168 
patients already during the first 5 days of hospital admission, predominantly affecting the CD4+ 169 
T cell compartment, pointing to a potential functional deficit in T helper (Th) cell immune 170 
responses (Fig. 2D). While in samples from COVID-19m patients PD-1 expression normalized 171 
at TP 5 (week 4-14), it remained elevated on memory CD4+ T cell subsets in COVID-19s (Fig. 172 
S2C). In contrast to PD-1, the detected upregulation of the inhibitory receptor CTLA-4 on PMA 173 
and ionomycin-restimulated CD4+ effector memory (EM) cells occurred only at later stages of 174 
disease (TP 3 and 4; day 6-15) (Fig. 2E, S2D). These findings point to a shared altered innate 175 
immune response and signs of hyperinflammation and exhaustion within the T cell 176 
compartment across all patients with severe RS. 177 

In order to interrogate the cytokine polarization, the cells were briefly stimulated in vitro prior 178 
to spectral flow acquisition. The resulting cytokine profile of stimulated lymphoid 179 
subpopulations from COVID-19 patients showed significantly higher amounts of IL-21, as well 180 
as a shift towards a cytotoxic phenotype indicated by high levels of granzyme B and perforin 181 
in the T and NK cell compartments, relative to HCs (Fig. S2E, S2F, data not shown). CD107a 182 
on T and NK cells was similar in COVID-19s, COVID-19m and HCs (data not shown), 183 
suggesting not only equal cytotoxicity but also degranulation capacity across COVID-19 184 
disease severity. The same applies for TNF, IL-4, IL-6, and IL-17A, which failed to reach the 185 
cut-off of 0.3 ES when comparing mild and severe COVID-19 (Fig. 2F, S2G-J). However, we 186 
found increased production of interferon-g (IFN-g), IL-2 and GM-CSF in COVID-19s. 187 

Specifically, higher frequencies of IFN-g-expressing CD8+ EM, TEMRA (CCR7- CD45RA+) and 188 

TCRgd T cells (Fig. 2G) and IL-2-expressing TCRgd T cells were a common feature of severe 189 
RSs shared by COVID-19 and HAP (Fig. 2H). Elevated frequencies of GM-CSF-producing 190 
CD4+ and CD8+ TEMRA cells positively correlated with COVID-19 severity in the acute phase 191 
of disease (TP 1 and 2) (Fig. 2I, S2K, S2L). Single-cell RNA-seq analysis of blood cells from 192 



 8 

COVID-19 patients - in absence of ex vivo stimulation - revealed strong expression of CSF2 193 
(encoding for GM-CSF) particularly in CD4+ T cells (Fig. S2M). Detailed differentially 194 
expressed gene (DEG) analysis of CSF2 high vs. low expressing CD4+ T cells indicated these 195 
cells as a hyperinflammatory subset, strongly expressing TNF, IL21, TNFRSF4, GNLY, 196 
CD40LG, CCL20, ICAM1 and demonstrating low ANXA1 mRNA levels, among others (Fig. 197 
S2N). 198 

Overall, these data demonstrate a T cell compartment marked by both hyperinflammatory and 199 
exhaustive features shared by patients with severe COVID-19 and non-SARS-CoV-2-induced 200 
RSs (HAP). Over time, this phenotype persists, particularly in disease courses of COVID-19s 201 
(Fig. 2J). 202 

Phenotypic alterations in innate immune signatures are shared in severe COVID-19 and 203 
HAP  204 

We further characterized the identified DC and NK cell features shared by COVID-19s and 205 
HAP (Fig. 3A, Table S3). To reveal the dynamic changes over time, we displayed the COVID-206 
19 cohorts together with HCs as baseline and HAP patients as comparison. Lower expression 207 
of HLA-DR in CD56low CD16- NK cells suggest a diminished cytotoxic response in COVID-19s 208 
(Fig. 3B-D, S3A) (Erokhina et al., 2020). Similarly, COVID-19s displayed reduced frequency 209 
of plasmacytoid DCs (pDC) (Fig. 3E-G, S3B). Although the pDC frequency was also different 210 
from HAP, the cut-offs of the ES were not reached. Upregulation of the Fas receptor CD95 211 
was detected in all DC subsets - particularly on pDCs - at early TPs 1 and 2 (Fig. S3C, S3D). 212 
This might play a role in the loss of those cells through Fas-mediated apoptosis.  213 

To mimic SARS-CoV-2 infection in vitro, the PBMC samples were stimulated for 8h with the 214 
TLR7 and TLR8 agonist R848. In response, intermediate and non-classical monocytes as well 215 
as conventional DC2s (cDC2s) upregulated expression of the chemokine receptor CCR2 (Fig. 216 
S3E, S3F), but only the cDC2-related feature reached the cut-off for being COVID-19s-specific 217 
(>0.3 ES vs. COVID-19m) and positively correlated with the severity grade of SARS-CoV-2-218 
mediated disease (Fig. 3H). As CCR2 expression on DCs is a hallmark of inflammation and 219 
required for their migration to the inflamed lung (Kvedaraite et al., 2020; Nakano et al., 2017), 220 
this could explain the invasion of DCs into the lungs of patients hospitalized with severe 221 
COVID-19. The NK and DC-specific dysregulation described here were already apparent 222 
during the early phase of the disease, and the vast majority of these changes persisted until 223 
TP 5 in severe COVID-19 patients, yet resolved in patients with COVID-19m (Fig. 3I). In line 224 
with reduced pDC frequencies, IFN-� levels in the serum of COVID-19s patients showed a 225 
robust trend towards reduction, when compared to COVID-19m (Fig. S3G). 226 
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To summarize, patients with severe RS show signs of diminished cytotoxicity combined with 227 
increased cell migration within the NK cell and DC compartment independent of the underlying 228 
pathogen. 229 

Impaired antigen-presentation distinguishes the immune response to SARS-CoV-2 230 
versus other respiratory pathogens 231 

After defining several common immunological features characterizing the immune landscape 232 
of COVID-19s in common with HAP, we next extracted the features specific to SARS-CoV-2 233 
infection. We selected all immune traits characterizing COVID-19s (cut-off ES vs. COVID-19m 234 
> 0.3) and to further condense the signature uniquely existing in COVID-19s and being 235 
different from HAP, we set a strict cut-off ES 0.4 vs. HAP (Fig. 4A, Table S3). Building on the 236 
above-described common myeloid features, there were also phenotypic changes within this 237 
compartment that were specific to COVID-19s. Specifically, there was significantly lower 238 
expression of HLA-DR as well as the co-stimulatory ligand CD86 across antigen presenting 239 
cell (APC) subsets, which persisted throughout the duration of our study and were not shared 240 
to this extent by patients with mild COVID-19 disease (Fig. 4B, 4C, S4A, S4B). The protein 241 
expression of both HLA-DR and CD86 negatively correlated with the severity of COVID-19, 242 
with highest significance of this relationship within monocytes (Fig. 4D, 4E, S4C, S4D). 243 
Although the apparent paralysis in the APC compartment fulfilled the criteria for COVID-19s-244 
specificity (Fig. 4F), this was largely driven by a more pronounced APC dysfunction in HAP, 245 
when compared to HCs (Fig. 4G, H). Taken together, the emerging overall picture of a myeloid 246 
compartment characterized by an impaired APC function – most likely due to emergency 247 
myelopoiesis - in COVID-19s. However, the data suggest that this is a feature shared across 248 
all patients with severe RS and not specific to the immune response against SARS-CoV-2. 249 

Distinct signatures of COVID-19s are exclusive to the lymphocyte compartment 250 

While most of the alterations in the monocyte and DC compartment were convergent in the 251 
two severe RSs, we identified COVID-19s-specific T and NK cell signatures (Fig. 5A, Table 252 
S3; ES COVID-19s vs. COVID-19m > 0.3 and vs. HAP > 0.4). A focused analysis of all T cell 253 
subsets (Fig. S5A) revealed a dramatic loss of NKT cells in COVID-19s as one of those 254 
signatures (Fig. 5B). This NKT cell reduction was already apparent within the first week after 255 
COVID-19-related hospital admission (TP 1 and 2). As shown in the Receiver Operating 256 
Characteristic (ROC) curve of Table S4, a cut-off for NKT frequency among T cells of 2.3% 257 
can distinguish severe COVID-19 patients from mild disease with a sensitivity of 100% already 258 
at day 0-2 after hospital admission. This finding defines NKT frequency as a powerful 259 
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predictive biomarker for COVID-19s evolution and furthermore suggesting a role of these cells 260 
in the first phase of disease. 261 
In addition to the above-described upregulation of PD-1 predominantly in CD4+ T cells, higher 262 
expression of PD-1 by CD4+ EM cells turned out to be a feature unique to COVID-19s (ES vs 263 
HAP > 0.4), which positively correlated with severity grade (Fig. 5C, S5B). Chronically 264 
stimulated T cells overexpress inhibitory receptors including PD-1 and display poor effector 265 
capacity (Ahmadzadeh et al., 2009; Crawford et al., 2014; Huang et al., 2019a; Pauken and 266 
Wherry, 2015; Wu et al., 2014). By comparing PDCD1 high and low expressing CD4+ T cells 267 
using a single-cell RNA-seq dataset (Zhao et al., 2021), we found PDCD1 high CD4+ T cells 268 
to express genes associated with exhaustion (HAVCR2, LAG3, CTLA4, TIGIT, BATF) as well 269 
as reduced amounts of TCF7, TNF, IL2RA, TNFRSF4, FAS, MIKI67, associated with T cell 270 
activation (Fig. S5C). This dataset supports the notion that the T cell compartment in COVID-271 
19 patients is impaired or exhausted. 272 
The protein expression of CD38, another activation marker, across several T cell subsets 273 
positively correlated with COVID-19 severity, with the highest significance (p < 0.0001, R2 = 274 
0.24) in CD4- CD8- (TCRgd enriched) T cells (Fig. 5D, S5D). Furthermore, we observed a loss 275 

of the regulatory protein CD161 in CD4- CD8- (TCRgd enriched) T cells in COVID-19s (Fig. 276 

5E, S5E). This phenomenon is especially intriguing, as CD4- CD8- (TCRgd enriched) T cells 277 
share the transcriptional signatures of CD161-expressing Mucosa-Associated Invariant T 278 
(MAIT) cells, a CD8+ T cell subset resembling innate-like sensors and mediators of antiviral 279 
responses (Fergusson et al., 2014, 2016). 280 
Although failing to reach the stringent cut-off for being a unique COVID-19s specific feature 281 
(ES vs HAP > 0.4), CD161 was also expressed at a significantly lower level on immature and 282 
CD56low CD16+ NK cells in the early phase of severe SARS-CoV-2 related illness compared 283 
to mild disease (Fig. S5F). Here, the kinetics of CD161 expression was low at the beginning 284 
of disease with a delayed hyperreactivity in COVID-19s (Fig. S5F). Further dissecting the NK 285 
cell compartment, CD95 expression in the CD56high NK subset positively correlated with 286 
severity of COVID-19 and represents a unique characteristic specific to SARS-CoV-2 infection 287 
(Fig. 5F, S5G). As in the DC compartment described before, the significant and specific 288 
reduction of this NK subset supports the Fas-mediated, activation-induced apoptosis as the 289 
mechanism underlying the shift from effector to immature NK cells (Fig. S5H). 290 
Regarding the cytokine polarization profile, a reduced production of IFN-g in CD4+ central 291 
memory (CM) T cells was found to be COVID-19s specific and reflects the loss of CD4+ 292 
CXCR3+ CCR6+ (Th1 Th17-enriched) T cells (Fig. 5G, 5H). All features falling in the COVID-293 
19s specific category and diverging from HAP recovered only partly, both in mild and severe 294 
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SARS-CoV-2 infected patients, pointing to a persisting dysfunctional T and NK cell 295 
compartment (Fig. 5I). 296 
The recorded myeloid features in COVID-19s were even more pronounced in the HAP patients 297 
(Fig. 4G, 4H). In contrast, several identified COVID-19s specific T and NK cell features were 298 
clearly different from what has been observed in HC and HAP (Fig. 5B, 5E, 5H, 5J). Taken 299 
together, whereas changes in the myeloid compartment are shared across severe RS 300 
patients, our differential display approach extracted signatures of T cell exhaustion and altered 301 
early antiviral innate lymphoid response specific to the immune response to SARS-CoV-2. 302 

HLA profile links COVID-19 immunopathology to impaired virus recognition 303 

After defining the pathological immune landscape specific for SARS-CoV-2 and distinct from 304 
other pathogen-induced pneumonias, we next explored the degree of correlation existing 305 
across these and other COVID-19s-associated immune features in order to depict the overall 306 
immune network underlying COVID-19s. We therefore selected all signatures associated with 307 
COVID-19s (ES vs. COVID-19m > 0.3) from TP 1 and 2 and, for each feature, computed 308 
Pearson's r correlation values visualized in a heatmap plot for each COVID-19s and HAP (Fig. 309 
6A). Given the power of this multi-dimensional, global analysis tool, it was possible to identify 310 
correlation patterns within the immune network of the two investigated conditions, namely 311 
COVID-19s and HAP. Focusing on the interactive network underlying early and severe SARS-312 
CoV-2 mediated disease, we discovered distinctive associations between different branches 313 
of adaptive and innate immunity, translating into correlation clusters between myeloid and T 314 
cells (#1), myeloid and NK cells (#2) as well as T and NK cells (#3) (Fig. 6A). These 315 
associations were weak in HAP, further supporting our claim of a SARS-CoV-2 specific 316 
immune landscape that characterizes severe disease courses. 317 

Because of earlier evidence of SARS-CoV-2 peptide binding to Human Leukocyte Antigen 318 
(HLA) molecules differs across genotypes (Nguyen et al., 2020), we introduced next 319 
generation sequencing (NGS)-based HLA class I typing of 48 patients of our COVID-19 cohort. 320 
We calculated the predicted number of tightly binding (<50nm) SARS-CoV-2-derived peptides 321 
per HLA class I gene (based on every single underlying allele genotype) for each of our typed 322 
individuals (Fig. S6A, S6B, Table S5). This predicted binding capacity for HLA-A, HLA-B and 323 
HLA-C was further called HLA score 50. Next, we integrated this dataset to our single-cell 324 
immune profiling analysis and correlated this HLA-A, HLA-B and HLA-C score 50 to all our 325 
extracted severe COVID-19-associated immune features (Fig. 6B). This multi-omics approach 326 
allowed us to show that the majority of the severe COVID-19-associated immune features of 327 
the innate immune system (e.g. NKT frequency, HLA-DR in monocytes and DCs, etc.) was 328 
correlating with the SARS-CoV-2 binding strength (Fig. 6B). Meaning, that efficient HLA 329 
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binding capacity to SARS-CoV-2 peptides may mitigate the alterations of the innate immune 330 
system detected in COVID-19s. Also, the COVID-19s associated GM-CSF production in CD8+ 331 
CM T cells positively correlated with high HLA scores. To conclude, the data suggests that 332 
weak HLA binding to SARS-CoV-2 peptides may at least in part drive the immunopathology 333 
in COVID-19.  334 

To translate the complex immune signatures into clinical use, we correlated the COVID-19s-335 
defining immune signatures with routine clinical parameters. In order to identify stratifying 336 
biomarkers in the very early phase of disease, we included features significantly associated 337 
with COVID-19s at TP 1 only. As every COVID-19 patient was graded according to the 338 
maximum severity of disease during the longitudinal follow-up of the study and this grading 339 
was allocated to every sample of the same patient, the included features of TP 1 fulfil the 340 
criteria to be predictive. Several blood values and BMI (indicated by an arrow) were highly 341 
correlated with our COVID-19s-defining immune signatures, thereby translating these 342 
immunological findings into clinical routine parameters (Fig. 6C). To further validate these 343 
promising candidates for outcome prediction, we linearly correlated them with COVID-19 344 
severity grade (Fig. 6D, S6C). Although the number of provided values was limited and several 345 
associations turned out to be significant but with a low R squared value, LDH and granulocyte 346 
counts showed a strong correlation with worsening of COVID-19, thus presenting easily 347 
applicable biomarkers (Fig. 6D, S6D). 348 

In conclusion, we provide a translational path forward based on our differential immune map 349 
specific for severe SARS-CoV-2 infection combined with predicted HLA class I binding 350 
capacity to SARS-CoV-2 peptides, which can be used to guide therapeutic approaches aimed 351 
at interrupting the immunopathologic cascade of severe COVID-19. 352 

ACE2 expression in a CD4+ T cell subset increases after ex vivo stimulation 353 

SARS-CoV-2 employs the angiotensin-converting enzyme 2 (ACE2) as its receptor for cellular 354 
entry (Prompetchara et al., 2020; Zhou et al., 2020). To determine potential entry sites within 355 
T cells we measured ACE2 expression across our immune map. We did not identify ACE2 356 
expression in steady state healthy T cell subpopulations, whereas samples from severe RS 357 
showed marginal expression, especially in the CD4+ CXCR3+ CCR6+ (Th1 Th17-enriched) 358 
subset (Fig. 7A, 7B, 7C, S7A, S7B) which was significantly reduced in COVID-19s (Fig. 7D). 359 
When we profiled the stimulated PBMCs mimicking the COVID-19 inflammatory environment, 360 
we discovered a CD4+ T cell subpopulation, of which approximately 75-80% expressed ACE2 361 
(Fig. 7E, 7F). This population emerged from samples of both healthy and COVID-19 patients 362 
and expressed CD25, PD-1 and CTLA4 (Fig. 7G, 7H, S7C). Further analysis of this subset 363 
demonstrated no relevant overlap with a specific cytokine polarization profile or FOXP3 364 
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expression (Fig. S7D, S7E). The presence of ACE2 expression on an activated CD4+ T cell 365 
subset may provide a mechanism for virus entry and contribution to the immunopathological 366 
network of COVID-19.  367 



 14 

DISCUSSION 368 

The comparison of two cohorts of severe infectious RSs (COVID-19s and HAP) driven by 369 
different pathogens allowed us to uncover unique immune signatures in SARS-CoV-2 370 
mediated disease. Recent data describes the immunopathogenesis of HAP as critical illness-371 
related immuno-suppression (Roquilly et al., 2019) mainly characterized by alterations in the 372 
IL-12 - IFN-g axis (Roquilly et al., 2017). Conversely, the COVID-19 immune response includes 373 
traits also occurring in other severe RS triggered by other pathogens such as influenza (Lee 374 
et al., 2020; Tian et al., 2020). However, mainly due to the small cohort sizes and lack of a 375 
comparable control group of patients suffering from non-SARS-CoV-2 driven severe RS, the 376 
COVID-19-specific immune signature remains elusive. Within our dataset already, a global 377 
PCA analysis of all immunophenotypes allowed for a clear separation between COVID-19s, 378 
COVID-19m, HAP and HCs. There was however a partial overlap between COVID-19s and 379 
HAP, revealing some core immune features associated with severe RS independent from the 380 
disease etiology. 381 
Whilst previous studies described an impairment in the monocyte and DC compartment to be 382 
decisive for a severe COVID-19 course (Arunachalam et al., 2020; Kuri-Cervantes et al., 2020; 383 
Merad and Martin, 2020; Silvin et al., 2020), features which we confirmed here, those were 384 
found to not be exclusive to SARS-CoV-2-immunopathology. We confirmed loss of HLA-DR 385 
and CD86 expression in APCs, a finding associated with emergency myelopoiesis, where 386 
newly emerging myeloid cells show reduced APC capacity (Schulte-Schrepping et al., 2020). 387 
Recent data shows the secretion of CCL2 by airway macrophages and a concomitant 388 
upregulation of the CCL2-receptor CCR2 in peripheral blood monocytes of SARS-CoV-2 389 
infected patients; thus, extensive accumulation of monocytes and macrophages within 390 
alveolar spaces in COVID-19 lung autopsies suggests recruitment from circulation (Szabo et 391 
al., 2020). Our data support this, but in addition we observed that cDC2s also upregulated 392 
CCR2 expression with an even greater ES than monocytes. There is evidence for CCR2 being 393 
required for DC migration to the inflamed lung, respectively, while this is not the case in the 394 
steady state condition (Nakano et al., 2015, 2017). Thus, the declining number of cDC2s in 395 
the systemic circulation of COVID-19 patients may be a reflection of cDC2 extravasation into 396 
the affected lungs. 397 

Alongside signatures shared in severe RS, we also extracted those specific to and unique in 398 
COVID-19s. These SARS-CoV-2-induced adaptations were restricted to the T and NK cell 399 
compartment. Several studies described an upregulation of PD-1 and CD38 alongside other 400 
activation and exhaustion markers, suggesting a hyperactivated and exhausted T cell 401 
compartment (De Biasi et al., 2020; Chen and Wherry, 2020). However, again, it was unclear 402 
as to whether this emerging pattern in lymphocytes is the result of severe RS in general, or is 403 
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specific to the immunopathology induced by SARS-CoV-2. We here describe an overall picture 404 
of T cell exhaustion and altered early antiviral innate lymphoid response unique to COVID-405 
19s. 406 

SARS-CoV-2 entry into the host cells is initiated by binding of the virus to the cell surface 407 
transmembrane receptor ACE2, which is predominantly expressed in epithelial cells of the 408 
lung, intestine and endothelial cells (Varga et al., 2020). Our analysis revealed the ability of 409 
highly activated CD4+ T cells to express ACE2. Others also detected ACE2 positive 410 
lymphocytes in lungs COVID-19 patients (Ackermann et al., 2020; chen et al., 2020). 411 
Moreover, CD4+ Th cell infection by SARS-CoV-2 occurs in an ACE2 dependent manner 412 
(Pierce et al., 2020; Pontelli et al., 2020). Compared to SARS-CoV, SARS-CoV-2 has a 10 - 413 
20-fold higher affinity for host membrane ACE2 (Wrapp et al., 2020). Thus, even low ACE2 414 
expression may be sufficient for viral entry. A direct infection of responding lymphocytes, 415 
leading to cell death and impaired SARS-CoV-2 clearance, goes in line with higher peripheral 416 
blood viral load positively correlating with COVID-19 severity (Han et al., 2020). In conclusion, 417 
the ability for SARS-CoV-2 to directly infect T cells provides yet another potential mechanism 418 
to describe the immunopathology of COVID-19. 419 

The cytokine storm in COVID-19 is pronounced as one of the driving immunopathological 420 
features in SARS-CoV-2 mediated disease worsening (Merad and Martin, 2020; Moore and 421 
June, 2020; Del Valle et al., 2020). Our single-cell profiling of 11 cytokines did not result in 422 
higher frequencies of IL-6 and TNF (Del Valle et al., 2020), for which high plasma levels were 423 
described in COVID-19 patients, indicating neutrophils, monocytes and endothelial cells at the 424 
site of infection likely account for the dysregulated cytokine production. Nevertheless, we 425 
identified the cellular sources for GM-CSF as predominantly the CD4+ and CD8+ TEMRA 426 
subset - a feature of severe COVID-19 sharing with HAP - and documented correlation of the 427 
expression with COVID-19 severity. Our data complement two recent reports, which show that 428 
in particular lung invading T cells express GM-CSF (by using scRNA-seq) (Zhao et al., 2021) 429 
and that GM-CSF serum levels are elevated in COVID-19 patients (Thwaites et al., 2021). 430 
Supportive, elevated circulating GM-CSF+ CD4+ T cell levels are predictive of poor outcomes 431 
in sepsis patients (Huang et al., 2019b). Collectively, this suggests GM-CSF to be an early 432 
driver of the underlying immunopathological cascade in COVID-19s, thereby being a 433 
promising therapeutic target (NRI, GEM TRIAL, Clinical trial identifiers NCT04400929 and 434 
NCT04411680, (Bonaventura et al., 2020; Bosteels et al., 2020; Lang et al., 2020; De Luca et 435 
al., 2020)). 436 

Using NGS-based HLA-typing and further integration of this dataset into our single-cell 437 
immune profiling analysis, this multi-omics approach provides deep insights into the COVID-438 
19 immunopathology and a potential genetic influence: while COVID-19s-associated innate 439 
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immune alterations were less pronounced in patients with predicted high HLA class I binding 440 
capacity to SARS-CoV-2 peptides, GM-CSF production in CD8+ CM T cells – a feature 441 
associated with severe COVID-19 disease - was increased. The occurrence of both mild and 442 
severe COVID-19-associated immune features in patients with strong SARS-CoV-2 443 
recognition (high HLA score 50) could further explain the inconsistent reports which attempt 444 
to link HLA class I binding capacity to SARS-CoV-2 peptides to COVID-19 severity (Ellinghaus 445 
et al., 2020; Iturrieta-Zuazo et al., 2020). By combining the single-cell immune mapping with 446 
HLA genetics, we uncovered a link between the HLA profile and impaired virus recognition in 447 
COVID-19. 448 

Due to emerging follow-up studies, an increased number of COVID-19 patients are described 449 
to experience prolonged symptomatology. This phenomenon, referred to as "long COVID" 450 
affects around 10% of the cases. An attributed reason for long-lasting complaints is persistent 451 
tissue damage in severe cases. Nevertheless, patients following mild SARS-CoV-2 infections 452 
also suffer from prolonged symptoms (Iadecola et al., 2020; Mahase, 2020). We identified 453 
several immune features, predominantly of the T and NK compartment, which did not rebound 454 
at the end of our study, several weeks after infection. Thus, prolonged immune dysregulation, 455 
long after primary pathogen encounter, could play a role in “long COVID”. 456 

An additional aspect of our study was to identify predictive biomarkers of severe COVID-19 457 
patient outcomes. An earlier study identified the frequency of circulating MAIT cells to have 458 
predictive value (Flament et al., 2021). Here we identified a dramatic, early loss of NKT cells 459 
in the circulating immune compartment of COVID-19s. While others confirmed this observation 460 
(Zhang et al., 2020a; Zingaropoli et al., 2020), here we found this phenomenon indeed to not 461 
be shared across severe RS patients but being specific to the SARS-CoV-2 immune response. 462 
NKT cells are important for the production of an early wave of IL-4 promoting germinal center 463 
(GC) formation during viral infection. Delay in GC formation in COVID-19 patients may be a 464 
direct consequence of NKT cell migration to the airways (Dempsey, 2018; Fontana and 465 
Pepper, 2018; Jouan et al., 2020; Kaneko et al., 2020). Translation of this finding into clinical 466 
routine diagnostics can easily be implemented using CD3 and CD56 to calculate NKT cell 467 
frequencies upon hospital admission. Across our three independent COVID-19 cohorts, a cut-468 
off set to 2.3% for NKT cell frequencies (among T cells) would have identified all patients who 469 
later developed severe disease. Early identification of patients at risk could help to tailor their 470 
treatment and improve the outcome.  471 

LIMITATIONS OF THE STUDY 472 

While we initially anticipated center-specific batch effects in our multi-center study, this was 473 
not the case. However, our HAP cohort consists of patients suffering from severe pneumonia 474 
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driven by multiple pathogens, both bacterial and viral. The comparison of COVID-19 patients 475 
to a pure viral pneumonia cohort could help to further specify the unique immune signatures 476 
to SARS-CoV-2 and distinctive to other viruses. Using PBMCs as source of analyzed immune 477 
cells allows for easy implementation of our findings (such as NKT frequency as predictive 478 
biomarker) to the clinics. Even though the simple measurement of circulating NKT cell 479 
frequencies would have predicted all of our COVID-19 patients who developed severe 480 
disease, larger follow-up studies are needed to solidify this measurement as a predictive 481 
biomarker for COVID-19 patient outcomes.  482 
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FIGURE LEGENDS 515 

Figure 1: Immunomonitoring reveals differing immune landscapes in COVID-19m, 516 
COVID-19s and HAP patients 517 

A: Schematic of experimental approach. 518 

B: UMAP with FlowSOM overlay showing total CD45pos cells of combined samples. 1000 cells 519 
were subsetted from every sample from each cohort. 520 

C: PCA of the total immune compartment based on marker expression in the surface panel. 521 

D: Comparison of immune features derived from each leukocyte subpopulation between 522 
experimental groups. A dot plot displaying the ES calculated in HAP vs. COVID-19s (x axis; 523 
threshold 0.4) compared to the ES calculated in COVID-19m vs. COVID-19s (y axis; threshold 524 
0.3). Each dot represents one immunological feature, colors represent the leukocyte 525 
compartment they refer to. 526 

E: Proportion of each immune compartment (normalized to input) in the identified sets of 527 
immune features highlighted in Fig. 1D. 528 

See also Figure S1. 529 

Figure 2: Shared T cell features between severe pathogen-induced RSs highlight the 530 
emergence of hyperinflammatory and exhausted subsets in COVID-19s 531 

A: Comparison of immune features derived from each leukocyte subpopulation between 532 
experimental groups. A dot plot displaying the ES calculated in HAP vs. COVID-19s (x axis; 533 
threshold 0.4) compared to the ES calculated in COVID-19m vs. COVID-19s (y axis; threshold 534 
0.3). Each dot represents one immunological feature. The red box highlights immune features, 535 
which are associated with severe RS (COVID-19s and HAP), with a focus on changes within 536 
the T cell fraction. 537 

B:  UMAP with FlowSOM overlay of total T cells of combined samples. 1000 cells were 538 
subsetted from every sample from each cohort. T cell subsets with transparent names do not 539 
contain immune features highlighted in Fig. 2A. 540 

C: Median frequencies and 25th and 75th percentile of FlowSOM-generated CD4- CD8- 541 

(TCRgd enriched) immune cell cluster. 542 

D: Median expression and 25th and 75th percentile of PD-1 in FlowSOM-generated immune 543 
cell clusters shown in B. 544 
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E: Median expression of CTLA-4 within CD4+ EM T cell subset of HCs shown in grey, of HAP 545 
in blue and of mild and severe COVID-19 patients across TPs 1-5 shown in red. 546 

F: Schematic overview of cytokine polarization profile comparing COVID-19s and COVID-547 
19m. UMAP with FlowSOM overlay shows cytokine-producing T cell subpopulations (features 548 
reaching an ES > 0.3). 1000 T cells were subsetted from every sample from each cohort. 549 

G: Median frequency and 25th and 75th percentile of IFN-g positive cells in FlowSOM-550 
generated immune cell clusters shown in F. 551 

H: Median frequency and 25th and 75th percentile of IL-2 positive cells in FlowSOM-generated 552 
immune cell cluster shown in F. 553 

I: Correlation between frequency of GM-CSF expressing CD4+ (left panel) and CD8+ (right 554 
panel) TEMRA cells and the severity grade of COVID-19 patients in combined TPs 1 and 2. 555 

J: Heatmap depicting the z-score of each T cell related immune feature (highlighted in Fig. 556 
2A) when compared to HCs for every TP. Both negative and positive changes are visualized 557 
by intensity of red color scale. MFI = Mean fluorescence intensity. 558 

Significant p values are depicted using an asterisk (* = p < 0.05, ** = p < 0.01, *** = p < 0.001 559 
and **** = p < 0.0001, Mann-Whitney test, BH correction). See also Figure S2. 560 

Figure 3: Phenotypic alterations in innate immune signatures are shared in severe 561 
COVID-19 and HAP 562 

A: Comparison of immune features derived from each leukocyte subpopulation between 563 
experimental groups. A dot plot displaying the ES calculated in HAP vs. COVID-19s (x axis; 564 
threshold 0.4) compared to the ES calculated in COVID-19m vs. COVID-19s (y axis; threshold 565 
0.3). Each dot represents one immunological feature. The red box highlights immune features, 566 
which are associated with severe RS, with a focus on changes within the monocyte, DC and 567 
NK cell fraction. 568 

B:  UMAP with FlowSOM overlay of total NK cells of combined samples. 1000 cells were 569 
subsetted from every sample from each cohort. NK cell subsets with transparent names do 570 
not contain immune features highlighted in Fig. 3A. 571 

C: Median expression of various markers in FlowSOM-derived clusters shown in B. 572 

D: Median expression and 25th and 75th percentile of HLA-DR in FlowSOM-generated 573 
CD56low CD16- NK cell cluster shown in B, combined for TP 1 and 2 (left panel) or displayed 574 
for every individual TP (right panel). 575 
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E: UMAP with FlowSOM overlay of total monocytes and DCs of combined samples. 1000 cells 576 
were subsetted from every sample from each cohort. Monocyte and DC subsets with 577 
transparent names do not contain immune features highlighted in Fig. 3A. 578 

F: Median expression of various markers in FlowSOM-derived clusters shown in E. 579 

G: Median frequencies and 25th and 75th percentile of FlowSOM-generated pDC immune cell 580 
cluster. 581 

H: Correlation between median expression of CCR2 in cDC2s following TLR7 and TLR8 582 
stimulation against the severity grade of COVID-19 patients. All TPs have been pooled in the 583 
left panel, and individual TPs depicted in the right panel. 584 

I: Heatmap depicting the z-score of each monocyte and DC related immune feature 585 
(highlighted in Fig. 3A) when compared to HCs for every TP. Both negative and positive 586 
changes are visualized by intensity of red color scale. MFI = Mean fluorescence intensity. 587 

Significant p values are depicted using an asterisk (* = p < 0.05, ** = p < 0.01, *** = p < 0.001 588 
and **** = p < 0.0001, Mann-Whitney test, BH correction). See also Figure S3. 589 

Figure 4: Impaired antigen-presentation distinguishes the immune response to SARS-590 
CoV-2 versus other respiratory pathogens 591 

A: Comparison of immune features derived from each leukocyte subpopulation between 592 
experimental groups. A dot plot displaying the ES calculated in HAP vs. COVID-19s (x axis; 593 
threshold 0.4) compared to the ES calculated in COVID-19m vs. COVID-19s (y axis; threshold 594 
0.3). Each dot represents one immunological feature. The red box highlights immune features, 595 
which are different in COVID-19s and HAP, with a focus on changes within monocytes and 596 
DCs. 597 

Median expression of HLA-DR (B) or CD86 (C) within classical monocytes of HCs shown in 598 
grey, HAP patients in blue, and COVID-19m and COVID-19s patients across TPs 1-5 shown 599 
in red. 600 

Correlation between median expression of HLA-DR (D) or CD86 (E) in monocytes or DCs (TP 601 
1 and 2 pooled) against the severity grade of COVID-19 patients.  602 

F: Heatmap depicting the z-score of each monocyte and DC related immune feature 603 
(highlighted in Fig. 4A) when compared to HCs for every TP. Both negative and positive 604 
changes are visualized by intensity of red color scale. 605 

Median expression and the 25th and 75th percentile of HLA-DR (G) or CD86 (H) in FlowSOM-606 
generated monocyte and DC immune cell clusters. 607 
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Significant p values are depicted using an asterisk (* = p < 0.05, ** = p < 0.01, *** = p < 0.001 608 
and **** = p < 0.0001, Mann-Whitney test, BH correction). See also Figure S4. 609 

Figure 5: Distinct signatures of COVID-19s are exclusive to the lymphocyte 610 
compartment 611 

A: Comparison of immune features derived from each leukocyte subpopulation between 612 
experimental groups. A dot plot displaying the ES calculated in HAP vs. COVID-19s (x axis; 613 
threshold 0.4) compared to the ES calculated in COVID-19m vs. COVID-19s (y axis; threshold 614 
0.3). Each dot represents one immunological feature. The red box highlights immune features, 615 
which are different in COVID-19s and HAP, with a focus on changes within T and NK cells. 616 

B: Median frequencies and 25th and 75th percentile of FlowSOM-generated NKT immune cell 617 
cluster. 618 

C: Correlation between median expression of PD-1 in CD4+ EM cells (TP 1 and 2 pooled) 619 
against the severity grade of COVID-19 patients. 620 

D: Correlation between median expression of CD38 in CD4- CD8- (TCRgd enriched) and CD4+ 621 
EM T cells (TP 1 and 2 pooled) against the severity grade of COVID-19 patients. 622 

E: Median expression and 25th and 75th percentile of CD161 in FlowSOM-generated CD4- 623 

CD8- (TCRgd enriched) immune cell cluster. 624 

F: Correlation between median expression of CD95 in CD56high NK cells (TP 1 and 2 pooled) 625 
against the severity grade of COVID-19 patients. 626 

G: Schematic overview of cytokine polarization profile comparing COVID-19s and COVID-627 
19m. UMAP with FlowSOM overlay shows cytokine-producing T cells (features reaching an 628 
ES > 0.3 vs COVID-19m and > 0.4 vs HAP). 1000 T cells were subsetted from every sample 629 
from each cohort. 630 

H: Median frequency and 25th and 75th percentile of IFN-g positive cells in FlowSOM-631 
generated immune cell clusters shown in G. 632 

I: Heatmap depicting the z-score of each T and NK cell related immune feature (highlighted in 633 
Fig. 5A) when compared to HCs for every TP. Both negative and positive changes are 634 
visualized by intensity of red color scale. MFI = Mean Fluorescence Intensity. 635 

J: Median frequencies or expression of indicated populations and markers. Boxplots show the 636 
25th and 75th percentile. 637 
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Significant p values are depicted using an asterisk (* = p < 0.05, ** = p < 0.01, *** = p < 0.001 638 
and **** = p < 0.0001, Mann-Whitney test, BH correction). See also Figure S5. 639 

Figure 6: HLA profile links COVID-19 immunopathology to impaired virus recognition 640 

A: Correlogram of all immune features (TP 1 and 2) with ES COVID-19s vs. COVID-19m > 641 
0.3, shown for COVID-19s and HAP. Red arrows highlight immune features unique in COVID-642 
19s (ES vs. HAP > 0.4). The black boxes #1-3 highlight highly correlating immune clusters. 643 

B: Correlogram of immune features from TP 1 only with ES COVID-19s vs. COVID-19m > 0.3 644 
with HLA score 50. HLA score 50 represents the number of predicted tightly binding SARS-645 
CoV-2 peptides of both HLA alleles of a patient. Red arrows highlight SARS-CoV-2-specific 646 
immune features (ES COVID-19s vs. HAP > 0.4). 647 

C: Correlogram of immune features from TP 1 only with ES COVID-19s vs. COVID-19m > 0.3 648 
with routinely assessed clinical parameters. Red arrows highlight highly correlating 649 
parameters. 650 

D: Correlation between LDH and granulocyte counts (TP 1 only) against the severity grade of 651 
COVID-19 patients. 652 

See also Figure S6. 653 

Figure 7: ACE2 expression in a CD4+ T cell subset increases after ex vivo stimulation 654 

A: Comparison of immune features derived from each leukocyte subpopulation between 655 
experimental groups. A dot plot displaying the ES calculated in HAP vs. COVID-19s (x axis) 656 
compared to the ES calculated in COVID-19m vs. COVID-19s (y axis). Each dot represents 657 
one immunological feature. The red box highlights the immune feature focused in this figure. 658 

B: Median expression of indicated markers in FlowSOM-derived clusters of unstimulated 659 
samples. 660 

C: Median frequency and 25th and 75th percentile of ACE2 positive cells in a subset of 661 
unstimulated CXCR3+ CCR6+ (Th1 Th17-enriched) CD4+ T cells. All TPs have been pooled. 662 

D: Median frequency and 25th and 75th percentile of CXCR3+ CCR6+ (Th1 Th17-enriched) 663 
CD4+ T cells at each TP. 664 

E: Representative plot showing ACE2 and isotype staining within the T cell compartment of 665 
PMA and ionomycin restimulated (5h) COVID-19 samples. 666 
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F: Median frequency and 25th and 75th percentile of ACE2 positive cells in FlowSOM-667 
generated immune cell clusters after PMA and ionomycin restimulation (5h). All TPs have 668 
been pooled. 669 

G: Median expression of various markers in FlowSOM-derived clusters of PMA and ionomycin 670 
restimulated (5h) samples. 671 

H: Median expression and 25th and 75th percentile of PD-1 (left panel) and CTLA-4 (right 672 
panel) in FlowSOM-generated immune cell clusters after PMA and ionomycin restimulation 673 
(5h). All TPs have been pooled. 674 

Significant p values are depicted using an asterisk (* = p < 0.05, ** = p < 0.01, *** = p < 0.001 675 
and **** = p < 0.0001, Mann-Whitney test, BH correction). See also Figure S7.  676 
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STAR METHODS 677 

KEY RESOURCES TABLE 678 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

anti-human ACE2 (Biotin) (AC18F) Adipogen Life 
sciences 

Cat# AG-20A-
0032B-C050; RRID: 
N/A 

anti-human CCR2 (K036C2), BV605 BioLegend Cat# 357213; 
RRID:AB_2562702 

anti-human CCR6 (G034E3), BV711 BioLegend Cat# 353435; 
RRID:AB_2629607 

anti-human CCR7 (CD197) (G043H7), BV785 BioLegend Cat# 353229; 
RRID:AB_2561371 

anti-human CD11c (B-ly6), BUV661 BD Cat# 612968; 
RRID:AB_2870241 

anti-human CD123 (IL-3R) (6H6), APC/Fire 750 BioLegend Cat# 306041; 
RRID:AB_2750163 

anti-human CD123 (IL-3R) (6H6), BV711 BioLegend Cat# 306029; 
RRID:AB_2566353 

anti-human CD14 (M5E2), BUV737 BD Cat# 612763; 
RRID:AB_2870094 

anti-human CD14 (TüK4), Qdot800 Thermo Cat# Q10064; 
RRID:AB_2556449 

anti-human CD141 (1A4), BB700 BD Cat# 742245; 
RRID:AB_2740668 

anti-human CD152 (CTLA-4) (BNI3), BB790-P BD customized 

anti-human CD16 (3G8), BUV496 BD Cat# 612944; 
RRID:AB_2870224 

anti-human CD161 (HP-3G10), eFluor 450 Thermo Cat# 48-1619-41; 
RRID:AB_10854575 

anti-human CD19 (HIB19), APC-Cy7 BioLegend Cat# 302218; 
RRID:AB_314248 

anti-human CD19 (SJ25C1), PE-Cy5.5 Thermo Cat# 35-0198-42; 
RRID: AB_11218903  

anti-human CD194 (CCR4) (1G1), BUV615 BD Cat# 613000; 
RRID:AB_2870269 

anti-human CD1c (F10/21A3), BB660-P2 BD customized 

anti-human CD25 (IL-2Ra) (M-A251), PE-Cy7 BioLegend Cat# 356107; 
RRID:AB_2561974 

anti-human CD27 (M-T271), BUV563 BD Cat# 741366; 
RRID:AB_2870866 

anti-human CD279 (PD-1) (EH12.2H7), BV421 BioLegend Cat# 329919; 
RRID:AB_10900818 

anti-human CD279 (PD-1) (EH12.2H7), BV605 BioLegend Cat# 329924; 
RRID:AB_2563212 

anti-human CD28 (CD28.2), BV605 BioLegend Cat# 302967; 
RRID:AB_2800754 

anti-human CD3 (HIT3a), APC-Cy7 BioLegend Cat# 300318; 
RRID:AB_314054 

anti-human CD3 (Oct.03), BV510 BioLegend Cat# 317332; 
RRID:AB_2561943 

anti-human CD3 (UCHT1), BUV805 BD Cat# 565515; 
RRID:AB_2739277 

anti-human CD33 (WM53), BUV395 BD Cat# 740293; 
RRID:AB_2740032 

anti-human CD38 (HIT2), APC-Cy5.5 Thermo Cat# MHCD3819; 
RRID:AB_1472718 
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anti-human CD4 (SK3), Spark Blue 550 BioLegend Cat# 344656; 
RRID:AB_2819979 

anti-human CD45 (2D1), PerCP BioLegend Cat# 368506; 
RRID:AB_2566358 

anti-human CD45 (HI-30), BUV805 BD Cat# 564915; 
RRID:AB_2744401 

anti-human CD45RA (HI100), BUV395 BD Cat# 740298; 
RRID:AB_2740037 

anti-human CD56 (HCD56), APC-Cy7 BioLegend Cat# 318332; 
RRID:AB_10896424 

anti-human CD56 (NCAM16.2), BUV737 BD Cat# 612766; 
RRID:AB_2813880 

anti-human CD57 (HNK-1), FITC BioLegend Cat# 359603; 
RRID:AB_2562386 

anti-human CD8 (3B5), Ax Fluor 700 Thermo Cat# MHCD0829; 
RRID:AB_10372957 

anti-human CD86 (2331 (FUN-1)), BUV805 BD Cat# 742032; 
RRID:AB_2871328 

anti-human CD95 (FasR) (DX2), PE/Cy5 Thermo Cat# 15-0959-42; 
RRID:AB_11042290 

anti-human CXCR3 (G025H7), BV650 BioLegend Cat# 353729; 
RRID:AB_2562628 

anti-human CXCR5 (CD185) (RF8B2), BV750 BD Cat# 747111; 
RRID:AB_2871862 

anti-human GM-CSF (BVD2-21C11), PE BD Cat# 554507; 
RRID:AB_395440 

anti-human Granzyme B (GB11), FITC BioLegend Cat# 515403; 
RRID:AB_2114575 

anti-human HLA-DR (L243), BV570 BioLegend Cat# 307637; 
RRID:AB_10895753 

anti-human IFN-γ (B27),V450 BD Cat# 560371; 
RRID:AB_1645594 

anti-human IgD (IA6-2), BV480 BD Cat# 566138; 
RRID:AB_2739536 

anti-human IgG (polyclonal), Ax Fluor 647 Jackson immuno 
research 

Cat# 109-606-098; 
RRID:AB_2337899 

anti-human IgM (MHM-88), PE/Dazzle594 BioLegend Cat# 314529; 
RRID:AB_2566482 

anti-human IL-17A (BL168), APC-Cy7 BioLegend Cat# 512320; 
RRID:AB_10613103 

anti-human IL-1β (H1b-98), Pacific Blue BioLegend Cat# 511710; 
RRID:AB_2124350 

anti-human IL-2 (MQ1-17H12), BV711 BioLegend Cat# 500345; 
RRID:AB_2616638 

anti-human IL-21 (3A3-N2.1), Ax Fluor 647 BD Cat# 562043; 
RRID:AB_10896655 

anti-human IL-4 (8D4-8), APC BioLegend Cat# 500714; 
RRID:AB_1877159 

anti-human IL-6 (MQ2-13A5), PE/Dazzle594 BioLegend Cat# 501122; 
RRID:AB_2810622 

anti-human IL-8 (E8N1), PE-Cy7 BioLegend Cat# 511415; 
RRID:AB_2565290 

anti-human TCRγδ (IMMU510), Pe-Cy5 Beckman Coulter Cat# IM2662U; 
RRID: N/A 

anti-human TNF (MAb11), BV750 BD Cat# 566359; 
RRID:AB_2739709 

Streptavidin, BB630-P2 BD customized 
Biological samples 
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COVID-19 PBMC samples University Hospital 
Tuebingen, Germany N/A 

COVID-19 PBMC samples Toulouse University 
Hospital, France N/A 

COVID-19 PBMC samples Nantes University 
Hospital, France N/A 

HAP PBMC samples Nantes University 
Hospital, France N/A 

Healthy PBMC samples Nantes University 
Hospital, France N/A 

Chemicals, peptides, and recombinant proteins 

RPMI 1640 Seraglob Cat# M3413; RRID: 
N/A 

Phosphate-buffered saline Homemade N/A 

R848 Invivogen Cat# tlrl-r848; RRID: 
N/A 

Human TruStain FcX BioLegend Cat# 422302; 
RRID:AB_2818986 

Formaldehyde 4.0% PanReac Cat# 252931.1211; 
RRID: N/A 

Benzonase nuclease Sigma-Aldrich Cat# E1014-25KU; 
RRID: N/A 

Fetal bovine serum Gibco Cat# A3160802; 
RRID: N/A 

Penicillin Streptomycin Gibco Cat# 15140-148; 
RRID: N/A 

GlutaMAX Gibco Cat# 35050-038; 
RRID: N/A 

Phorbol 12-myristate 13-acetate Sigma-Aldrich Cat# P1585-1MG; 
RRID: N/A 

Ionomycin Sigma-Aldrich Cat# I0634-1MG; 
RRID: N/A 

1x Brefeldin A BD Cat# 555029; 
RRID:AB_2869014 

1x Monensin BD Cat# 554724; 
RRID:AB_2869012 

Live/Dead Fixable Blue Thermo Scientific Cat# L23105; RRID: 
N/A 

DNA easy blood and tissue kit Quiagen Cat# 69504; RRID: 
N/A 

Deposited data 

spectral flow cytometry data this study http://dx.doi.org/10.1
7632/ffkvft27ds.2 

supplemental spreadsheets this study http://dx.doi.org/10.1
7632/ffkvft27ds.2 

scRNA-seq data (Zhao et al., 2021) 

https://www.ncbi.nlm
.nih.gov/geo/query/a
cc.cgi?acc=GSE167
118 

Software and algorithms 

Affinity designer Affinity https://affinity.serif.c
om/de/designer/ 

corrplot Taiyun Wei and Viliam 
Simko (2017) 

https://github.com/tai
yun/corrplot 

dplyr Wickham et al., 2019 

https://cran.r-
project.org/web/ 
packages/dplyr/inde
x.html 
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FlowJo V10.6.2. Tree Star https://www.flowjo.co
m/ 

FlowSOM (Van Gassen et al., 
2015) 

https://github.com/S
ofieVG/FlowSOM 

flowStats 
 Hahne et al., 2020 

https://www.biocond
uctor.org/ 
packages/release/bi
oc/html/ 
flowStats.html 

ggplot2 
 Wickham et al., 2019 

https://cran.r-
project.org/web/ 
packages/ggplot2/in
dex.html 

Harmony (Korsunsky et al., 
2019) 

https://github.com/im
munogenomics/harm
ony 

Hmisc Harrell, 2020 

https://cran.r-
project.org/web/ 
packages/Hmisc/ind
ex.html 

pheatmap Kolde, 2019 

https://cran.r-
project.org/web/ 
packages/pheatmap/
index.html 
 

R studio (R Studio, 2015) https://www.rstudio.c
om/ 

R version 3.6.1 (R Core, 2013) https://www.r-
project.org/ 

Seurat (v3.1.4) (Stuart et al., 2019) https://satijalab.org/s
eurat/ 

SingleR (Aran et al., 2019) https://github.com/dv
iraran/SingleR 

Stats Bolar et al., 2019 
https://CRAN.R-
project.org/package
=STAT 

UMAP (McInnes et al., 2018) https://github.com/lm
cinnes/umap 

Other 
Automated cell counter Bio-Rad N/A 
Cryo thaw devices Medax N/A 
Cytek Aurora Cytek Biosciences N/A 
Illumina MiniSeq Illumina N/A 
LABScan 3D instrument Luminex N/A 

 679 

RESOURCE AVAILABILITY 680 

Lead Contact 681 

Further information and requests for resources should be directed to and will be fulfilled by the 682 
Lead Contact, Burkhard Becher (becher@immunology.uzh.ch). 683 

Materials Availability 684 

This study did not generate new unique reagents. 685 
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Data and Code Availability 686 

Spectral flow cytometry data generated during this study and additional supplemental items 687 
are available from Mendeley Data at http://dx.doi.org/10.17632/ffkvft27ds.2 (DOI: 688 
10.17632/ffkvft27ds.2) 689 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 690 

COVID-19 Patient Samples 691 

Clinical routine data and blood samples for peripheral blood mononuclear cell (PBMC) 692 
isolation and cryopreservation were collected at the University Hospital Tuebingen (Germany), 693 
the Toulouse University Hospital (France, in the frame of the COVID-BioToul biobank, 694 
ClinicalTrials.gov Identifier: NCT04385108) and the Nantes University Hospital (France) 695 
(Table S1A). All donors had given written informed consent and the study was approved by 696 
the regional ethical review board of Tuebingen (COVID-19), Toulouse (COVID-19) and Nantes 697 
(COVID-19, HAP, Healthy) respectively. COVID-19 diagnosis was established by a positive 698 
PCR test. PBMC samples were collected longitudinally at the indicated time points post-699 
admission to the hospital (Table S1C). COVID-19 patients were graded according to the 700 
maximum severity of disease during the study based on the WHO ordinal scale (World Health 701 
Organization, 2020b). The WHO grade 1 and 2 were combined to grade 1 in our scale, the 702 
WHO grade 7 and 8 were combined to grade 6 in our categorization. The appropriate severity 703 
grade was then allocated to all samples of the same patient. Mean age of COVID-19 patients 704 
was 62.2 years, the percentage of females was 40.4. 705 

Human Subjects with HAP and Healthy Samples 706 

Bioresources: IBIS-sepsis (severe septic patients) and IBIS (brain-injured patients), Nantes, 707 
France. Patients were enrolled from January 2016 to May 2019 in two French Surgical 708 
Intensive Care Units of one University Hospital (Nantes, France) and samples collected in 709 
accordance to the guideline of standardization (CoBRA) (Bravo et al., 2015). Patients with 710 
immunosuppression were not enrolled to the study. The criteria to diagnose hospital-acquired 711 
pneumonia were (1) radiological signs combined with (2) body temperature > 38,3 ̊C without 712 
any other cause or leukocytes < 4000/mm3 or > 12000/mm3 and (3) at least two of the following 713 
symptoms: purulent sputum, cough or dyspnea, declining oxygenation or increased oxygen-714 
requirement or need for respiratory assistance (Leone et al., 2018). Hospital-acquired 715 
pneumonia were microbiologically confirmed with quantitative culture (for patients with 716 
antibiotics < 48h) (thresholds of 104 colony-forming units (CFU) per mL for a bronchoalveolar 717 
lavage). PCR for Herpes Simplex Virus and Cytomegalovirus were performed in tracheal 718 
aspirates at day 1, day 7 and day 15 after ICU admission. The collection of human samples 719 
has been declared to the French Ministry of Health (DC-2011-1399), and it has been approved 720 
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by an institutional review board. Written informed consent from a next-of-kin was required for 721 
enrolment. Retrospective consent was obtained from patients, when possible. All patients 722 
were clinically followed up for 28 days. Control samples were collected from healthy blood 723 
donors, recruited at the Blood Transfusion Center (Etablissement Français du Sang, Nantes, 724 
France). Mean age of HAP patients was 43.8 years, the percentage of females was 8.7. Mean 725 
age of healthy controls was 52.0 years, the percentage of both females was 44.4. 726 

METHOD DETAILS 727 

Ex vivo Reactivation of PBMCs 728 

PBMCs collected in clinics were kept in cell culture medium (RPMI-1640, 10% fetal bovine 729 
serum (FBS; Gibco), and 1× l-glutamine (Gibco) and 1× penicillin streptomycin (Gibco)) 730 
supplemented with 5U ml−1 benzonase (Sigma–Aldrich) and frozen in liquid nitrogen until 731 
experimental analysis. Then, for spectral flow analysis, cells were thawed using Cryo thaw 732 
devices (Medax). Briefly, cells were resuspended in cell culture medium supplemented with 733 
2U ml−1 benzonase by centrifugation (300 r.c.f.; 7 min; 24 °C).  Cell count was calculated using 734 
an automated cell counter (Bio-Rad). Due to the resulting cell count, cells were used for all 735 
panels or surface panel only. Subsequent procedure including short-term reactivation of 736 
cryopreserved PBMCs and cytometry analysis were performed as described previously (Galli 737 
et al., 2019; Hartmann et al., 2016). Briefly, 2 million (mio) cells were directly stained for 738 
cytometry analysis (surface panel), while 1 mio cells were restimulated with 50 ng ml−1 phorbol 739 
12-myristate 13-acetate (Sigma–Aldrich) and 500 ng ml−1 ionomycin (Sigma–Aldrich) in the 740 
presence of 1× Brefeldin A and 1x Monensin (both BD Biosciences) for 5 h at 37°C or in case 741 
of R848 stimulation, 2.5 mio cells using 2µg ml−1 R848 (Invivogen) in the presence of 1× 742 
Brefeldin A and 1x Monensin (both BD Biosciences) for 8 h at 37°C. 743 

Surface Labeling for Spectral Flow Cytometry 744 

For spectral cytometry, samples were washed in PBS and then resuspended in 100µl of Live 745 
Dead Fixable Blue mixture (Thermo Scientific, 1:500) followed by a washing step. To avoid 746 
nonspecific binding, the samples were resuspended in 30 µl of True Stain FcX (BioLegend) 747 
and incubated for 10 min at 4°C. Anti-human flow cytometric antibodies were purchased pre-748 
conjugated (Table S2A-C). 70 μl of the first surface-antibody mixture was added and cells 749 
were incubated for 15 min at 37°C (Table S2A). After another washing step, the second 750 
surface-antibody staining step (100 µl) was performed for 15 min at 4°C (Table S2A). Then, 751 
fixation was performed using 150 µl of 2% PFA for 15 min at 4°C. 752 

Intracellular Cytokine Labeling for Spectral Flow Cytometry 753 
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For intracellular spectral cytometry, after surface-antibody labeling, cells were fixed and 754 
permeabilized using Cytofix Cytoperm reagent (BD Biosciences) for 30 min at 4°C. 755 
Intracellular labeling was then performed in 100 µl of 1x permeabilization buffer (Thermo 756 
Scientific) for 11 h (Lymphoid cytokine panel, Table S2B) or 10 h (Myeloid cytokine panel, 757 
Table S2C) at 4°C. 758 

HLA Typing 759 

For DNA extraction the DNA easy blood and tissue kit from Quiagen was used. HLA typing 760 
was performed using next generation sequencing (NGS) with the NGSgo-AmpX v2 HLA kits 761 
(GenDx, Utrecht, Netherlands), and sequenced on an Illumina MiniSeq (Illumina, San Diego, 762 
CA). Sequence data were analyzed with NGSengine (GenDx, Utrecht, Netherlands). For 763 
samples with low DNA amount, HLA typing was also performed using sequence specific 764 
oligomers (SSO) with the LABType kits (One Lambda, Canoga Park, CA). The bead-based 765 
analysis was run on a LABScan 3D instrument (Luminex, Austin, TX) and analyzed using the 766 
Fusion Software (One Lambda, Canoga Park, CA). All assays were performed according to 767 
the manufacturer's recommendations. 768 

QUANTIFICATION AND STATISTICAL ANALYSIS 769 

Acquisition and Preprocessing of Spectral Flow Cytometry Data 770 

Spectral cytometry samples were acquired on a Cytek Aurora (Cytek Biosciences). Quality 771 
control of the Cytek Aurora was performed daily as instructed by the manufacturer. For 772 
downstream analysis, dead cells and doublets were excluded using FlowJo (TreeStar). 773 
Samples with viability lower than 10% and fewer than 500 live, CD45 positive cells were 774 
excluded. Cytometry data were transformed with an inverse hyperbolic sine (arcsinh) function 775 
using the R environment (range 30 - 18000). To balance the influence of markers with different 776 
dynamic ranges, we performed background subtraction and channel-based percentile 777 
normalization using the 99.9th percentile of each marker across the whole dataset (Bendall et 778 
al., 2011). Individual cytokine positivity thresholds were determined based on the 99th 779 
percentile of the residual staining in an unstimulated or isotype-stained control sample. 780 

Algorithm-based High-dimensional Analysis of Spectral Flow Cytometry Data 781 

Pre-processed data were downsampled to a maximum of 150’000 cells per donor for the 782 
analysis of the main populations, all cells were used for analysis of the specific immune 783 
compartments. The high dimensional analysis was carried out using the R environment, based 784 
loosely on the workflow described previously (Mair et al., 2016). Two-dimensional UMAP 785 
(Uniform Manifold Approximation and Projection) projections were calculated using the umap 786 
package (McInnes L  Saul N,  Großberger L, 2018). All FlowSOM-based clustering was 787 
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performed on the whole dataset to enable identification of small populations, and the results 788 
were overlaid on the dimensionality reduction maps (Van Gassen et al., 2015). Principal 789 
component analysis was carried out in the stats package using the median activation marker 790 
expression of all detected leukocyte subsets. The circles represent the core areas added by 791 
the default confidence interval of 68%, which facilitates the separation based on the PC1/2 792 
explanatory rate of the overall difference in measured immune features. For the correlogram, 793 
Pearson's r correlation coefficients were computed using the Hmisc package and the resulting 794 
correlation matrix was visualized using the corrplot package. All other plots were drawn using 795 
ggplot2. For longitudinal visualization, smoothed conditional mean of the feature from the 796 
combined COVID-19 cohort was added in light grey. 797 

Calculation of HLA Score 50 798 

Based on the study data of Nguyen et al. (Nguyen et al., 2020), the predicted HLA class I 799 
binding capacity to SARS-CoV-2-derived peptides per patient was calculated by counting the 800 
number of all SARS-CoV-2-derived peptides which were predicted to be bound by each 801 
specific HLA allele. The score 50 includes all SARS-CoV-2 peptides which were predicted for 802 
tight binding (<50nm) to the indicated HLA class I allele. The final HLA score 50 per patient 803 
represents the total number of tight binding SARS-CoV-2 peptides of both alleles of the patient 804 
for HLA-A, HLA-B or HLA-C. 805 

Single-cell RNA-seq Analysis 806 

For single-cell RNA-seq analysis we used a publicly available dataset of sorted CD45+ blood 807 
cells of COVID-19 patients 808 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167118), of which 5'-RNA single 809 
cell transcriptome (10x genomics) was performed. For preprocessing, the feature-barcode 810 
matrices for all the sample were further processed by the R package Seurat (v3.1.4). As a 811 
quality-control (QC) step, we first filtered out the cells in which less than 200 genes were 812 
detected in the blood samples. To remove potential doublets, we excluded cells with total 813 
number of detected genes more than 5000. Low-quality cells with more than 5% mitochondrial 814 
genes of all detected genes were removed. The LogNormalize method in Seurat was used to 815 
normalize the scRNA-seq and batch effect correction was performed using Harmony. The R 816 
package SingleR, an automatic annotation method for single-cell RNA sequencing (Aran et 817 
al., 2019) were then used to determine the cell types. The differential expression between 818 
selected groups were calculated by the FindAllMarkers function (min.pct = 0.25, 819 
logfc.threshold = 0.25, Wilcoxon rank sum tests). 820 

Statistical Analysis 821 
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Frequencies of immune populations, cytokines, median expression values and absolute 822 
counts were compared with the non-parametric Mann–Whitney–Wilcoxon test and Benjamini-823 
Hochberg correction for multiple testing, using the R package rstatix. For correlation 824 
measurements, we used a linear regression model by applicating the lm() and summary() 825 
functions. P values of less than 0.05 were considered significant and are indicated by an 826 
asterisk (*) or the numerical value on the respective graphs.  827 
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SUPPLEMENTAL TABLES 828 

Detailed information about patient cohorts, clinical routine parameter and TPs (related to 829 
Figure 1A and S1A): Kreutmair_et_al_Suppl_Table1.xlsx 830 

Spectral flow cytometry panels (related to Figure 1-7 and S1-S7): 831 
Kreutmair_et_al_Suppl_Table2.xlsx 832 

Selected immune features (related to Figure 2-5): Kreutmair_et_al_Suppl_Table3.xlsx 833 

ROC curve of NKT cell frequency among T cells (related to Figure 5B): 834 
Kreutmair_et_al_Suppl_Table4.xlsx 835 

HLA types and HLA scores 50 (related to Figure 6B, S6A and S6B): 836 
Kreutmair_et_al_Suppl_Table5.xlsx  837 
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