idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
26.05.2015 13:12

Wie Pflanzen sich gegen Bakterien abschotten

Gunnar Bartsch Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Wenn Pflanzen schädliche Bakterien bemerken, reagieren sie darauf sehr schnell: Sie verschließen an ihren Blättern die Poren, die den Erregern als Schlupflöcher dienen. Eine Würzburger Forschungsgruppe hat diesen Vorgang analysiert.

    Pflanzen werden ständig von Viren, Pilzen und Bakterien bedrängt. Darum haben sie im Lauf der Evolution Immunantworten entwickelt, mit denen sie sich gegen viele krankheitserregende Mikroorganismen wehren. Ein internationales Forschungsteam hat jetzt eine Immunantwort analysiert, die Bakterien das Eindringen in die Blätter erschwert.

    In den Blättern befinden sich sehr viele kleine Poren, die sich weit öffnen oder komplett verschließen lassen. Über diese Löcher in ihrer Haut regulieren die Pflanzen den lebensnotwendigen Austausch von Luft und Wasser mit der Umgebung. Die Poren bergen aber auch ein Risiko: Für krankheitserregende Bakterien sind sie willkommene Schlupflöcher, um in die Pflanzen einzudringen.

    Was bei einer bakteriellen Infektion an den Blattporen, den Stomata, passiert, war bislang so gut wie unbekannt. Ein internationales Forschungsteam hat dazu jetzt neue Erkenntnisse in der Zeitschrift „New Phytologist“ veröffentlicht. Den Kern des Teams bilden die Pflanzenwissenschaftler Rainer Hedrich und Rob Roelfsema von der Universität Würzburg. In ihren Arbeitsgruppen sind die molekularen Mechanismen zur Kontrolle der Stomata seit vielen Jahren ein Schwerpunkt.

    Bakterienprotein Flagellin in Blätter injiziert

    Wie reagieren die Stomata auf einen Befall mit Bakterien? Das wollte Aysin Guzel Deger von der Universität Mersin (Türkei) herausfinden, die derzeit als Gastdoktorandin in Würzburg ist. Dazu injizierte sie das Bakterienprotein Flagellin in die Blätter der Modellpflanze Ackerschmalwand (Arabidopsis thaliana). Dieses Protein kommt bei sehr vielen Bakterien vor. Die Pflanzen stufen es offensichtlich als Gefahr ein und reagieren dann sehr schnell: Sie beginnen etwa 15 Minuten nach der Injektion, ihre Stomata zu verschließen. So versperren sie den Eintrittsweg für die Bakterien.

    Das Flagellin entfaltet seine Wirkung an den Schließzellen, die die Stomata der Pflanze begrenzen: Je zwei davon säumen jede Blattpore und sorgen dafür, dass sich die Porengröße verändern lässt. In Kooperation mit einem Team aus Estland fanden die Würzburger heraus, wo genau an den Schließzellen das Flagellin wirkt: „Es aktiviert dort über das Enzym OST1 die Ionenkanäle SLAC1 und SLAH3. Als Folge davon erschlaffen die Schließzellen und die Poren gehen zu“, erklärt Roelfsema.

    Flagellin aktiviert den Trockenstress-Signalweg

    Interessanterweise sind das Enzym und die zwei Ionenkanäle auch daran beteiligt, wenn Pflanzen ihre Poren bei Trockenheit dichtmachen. Auf diesem Weg verringern sie den Verlust von Wasser an die Umgebung, wie Hedrichs Team schon vor längerer Zeit herausgefunden hat.

    Trockenheit und bakterielle Krankheitserreger aktivieren in Pflanzen also denselben Signalweg: Diese neue Erkenntnis könnte sich in der Pflanzenzüchtung dazu nutzen lassen, um zwei Fliegen mit einer Klappe zu schlagen: „Kulturpflanzen mit verbesserten OST1-Enzymen könnten vielleicht gleichzeitig widerstandsfähiger gegen Trockenheit und gegen Bakterien sein“, sagt Professor Hedrich. Für die Landwirtschaft sei das eine spannende Perspektive, denn Trockenheit und Schädlinge gehören zu den Hauptfaktoren, die weltweit für Ernteeinbußen sorgen.

    “Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure”, Aysin Guzel Deger, Sönke Scherzer, Maris Nuhkat, Justyna Kedzierska, Hannes Kollist, Mikael Brosché, Serpil Unyayar, Marie Boudsocq, Rainer Hedrich, and M. Rob G. Roelfsema. New Phytologist, online publiziert am 30. April 2015, DOI: 10.1111/nph.13435

    Kontakt

    Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I (Pflanzenphysiologie und Biophysik), Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

    PD Dr. Rob Roelfsema, Lehrstuhl für Botanik I (Pflanzenphysiologie und Biophysik), Universität Würzburg, T (0931) 31-86121, roelfsema@botanik.uni-wuerzburg.de


    Bilder

    Bakterien nutzen Poren als Schlupflöcher, um ins Blattinnere zu gelangen (A). Die Pflanze reagiert, indem sie die Ionenkanäle SLAC1 und SLAH3 aktiviert (r). Die Poren schließen sich.
    Bakterien nutzen Poren als Schlupflöcher, um ins Blattinnere zu gelangen (A). Die Pflanze reagiert, ...
    Grafik: Rob Roelfsema
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Bakterien nutzen Poren als Schlupflöcher, um ins Blattinnere zu gelangen (A). Die Pflanze reagiert, indem sie die Ionenkanäle SLAC1 und SLAH3 aktiviert (r). Die Poren schließen sich.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).