idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.07.2015 11:00

Von guten und schlechten Quantenzuständen

Dr. Florian Aigner Büro für Öffentlichkeitsarbeit
Technische Universität Wien

    Ein Trick aus der Quantentheorie macht es möglich, Quantenzustände aus tausenden Atomen zu beschreiben – mit herkömmlichen Methoden würde aller Speicherplatz der Welt dafür nicht ausreichen.

    Lange Zeit wurden quantenphysikalische Experimente bloß mit einer kleinen Anzahl von Teilchen durchgeführt. Schon das Verhalten einzelner Atome oder Moleküle ist oft schwer zu beschreiben. Mittlerweile ist es technisch möglich, auf kontrollierte Weise Experimente mit mehreren tausend Quantenteilchen durchzuführen, allerdings hat man dabei mit großen theoretischen Schwierigkeiten zu kämpfen. Der Quanten-Zustand eines solchen großen Systems ist nämlich so kompliziert, dass die gesamte Materie der Erde nicht ausreichen würde, ihn auf klassische Art und Weise präzise abzuspeichern.

    Ein Team der TU Wien und der Freien Universität Berlin stellt nun im Fachjournal „Nature Communications“ eine Quanten-Tomographie-Methode vor, mit der man mit Hilfe von wenigen Messungen den Zustand eines großen Quantensystems sehr genau messen und beschreiben kann. Die neue Technik beruht auf der Erkenntnis, dass ein solches System zwar unüberblickbar viele Quantenzustände einnehmen könnte, der Großteil von ihnen zunächst aber getrost ignoriert werden kann.

    Viele Teilchen und viele Zustände

    Wenn man eine Münze wirft, ist das Ergebnis entweder Kopf oder Zahl. Bei Quantenteilchen ist das komplizierter. Wenn sie in zwei verschiedenen Zuständen vorliegen können, dann ist auch jede beliebige Mischung dieser beiden Zustände physikalisch erlaubt. Daher ist es weitaus aufwändiger, den Zustand eines Quantenteilchens mathematisch zu beschreiben als den Zustand einer Münze, die auf dem Tisch liegt.

    „Je mehr Teilchen man betrachtet, umso komplizierter wird die Beschreibung des Gesamtsystems“, erklärt Prof. Jörg Schmiedmayer vom Vienna Center for Quantum Science and Technology (VCQ) an der TU Wien. „Der Speicherbedarf, den man für die präzise Angabe eines Quantenzustands benötigt, steigt exponentiell mit der Zahl der Teilchen. Bei einem System mit einigen hundert Teilchen gibt es mehr mögliche Zustände als das Universum Atome hat, es ist daher völlig unmöglich, den Zustand exakt aufzuschreiben oder zu berechnen.“

    Doch wie sich nun zeigt, ist das gar nicht unbedingt nötig: Die in Berlin in der Gruppe von Prof. Jens Eisert entwickelte theoretische Methode verwendet eine spezielle Art von Beschreibungen der Quantenzustände, die sogenannten „Continuous Matrix-Product States“ (CMP-Zustände). Diese spezielle Klasse von Zuständen bildet nur einen vergleichsweise verschwindend kleinen Teil aller möglichen Zustände, für die quantenphysikalische Beschreibung sind aber gerade diese Zustände relevant. „Zu dieser Klasse gehören Zustände mit realistischen Quantenverschränkungen“, erklärt Jens Eisert. „Exotische, komplizierte Muster von Verschränkungen zwischen vielen Quantenteilchen mögen physikalisch zwar auch erlaubt sein, aber in der Praxis treten sie nicht auf, daher können wir uns auf die CMP-Zustände beschränken.“

    Für jeden Quantenzustand gibt es CMP-Zustände, der ihm beliebig nahekommen. Egal welchen Zustand das System tatsächlich einnimmt – indem man sich auf CMP-Zustände beschränkt, macht man bloß einen winzigen Fehler. „Man kann sich das so ähnlich vorstellen wie die Bruchzahlen in der Mathematik“, sagt Eisert. „Die rationalen Zahlen, die als Bruch dargestellt werden können, stellen nur einen verschwindend kleinen Anteil an der Gesamtheit der reellen Zahlen dar. Aber zu jeder beliebigen Zahl lässt sich ein Bruch finden, der ihm beliebig nahe kommt.“ Die Zahl Pi etwa gehört nicht zu den Bruchzahlen – die Näherung, die ein Taschenrechner für die Zahl Pi eingespeichert hat, allerdings schon. Und für alle praktischen Anwendungen genügt das auch.

    Mehrere Messungen ergeben ein Quantenbild

    Durch die Beschränkung auf die CMP-Zustände wird es nun möglich, die Zustände großer Quantensysteme im Experiment auszulesen. „Aus einigen Messergebnissen kann man zwar keine vollständige Information über das System erhalten, aber das wollen wir auch gar nicht“, sagt Tim Langen, der die Experimente in Schmiedmayers Forschungsgruppe leitete. „Wir können mit unserer neuen Methode aus den Messungen den Quantenzustand rekonstruieren – und zwar so genau, dass wir damit dann das Ergebnis weiterer Messungen vorhersagen können.“ Dieses Verfahren bezeichnet man als „Tomographie“: Ähnlich wie bei der Computertomographie im Krankenhaus, bei der aus verschiedenen Einzelbildern ein 3D-Modell berechnet wird, kann man bei der Quantentomographie aus dem Ergebnis einzelner Quantenmessungen ein gutes Bild des Quantenzustands herstellen.

    Die neue Methode zeigt nicht nur neue Wege für die Vielteilchen-Quantenphysik auf, sie könnte auch neue „Quantensimulatoren“ ermöglichen. So bezeichnet man Quantensysteme, die man so präpariert, dass man damit ein anderes Quantensystem simulieren kann, das sich mit herkömmlichen Methoden nicht direkt untersuchen lässt. „Wenn zwei verschiedene Quantensysteme grundsätzlich mit denselben physikalischen Formeln beschrieben werden können, dann lässt sich durch die Untersuchung des einen viel über das andere lernen“, sagt Schmiedmayer. „Wir können tausende Atome auf unseren Quantenchips kontrollieren, dieses System eignet sich daher bestens für künftige Quantensimulationen.“

    Originalpublikation: "Towards experimental quantum field tomography with ultracold atoms”, Nature Communications, DOI: 10.1038/ncomms8663

    Rückfragehinweis:
    Prof. Jörg Schmiedmayer
    Atominstitut
    Technische Universität Wien
    Stadionallee 2, 1020 Wien
    T: +43-1-58801-141801
    M: +43-664-605883888
    hannes-joerg.schmiedmayer@tuwien.ac.at


    Bilder

    Atomchip, mit dem die Atome kontrolliert werden
    Atomchip, mit dem die Atome kontrolliert werden
    TU Wien
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Atomchip, mit dem die Atome kontrolliert werden


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).