idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.10.2019 10:00

Switch2save: smart windows and glass façades for highly efficient energy management

Dipl.-Geophys. Marie-Luise Righi PR und Kommunikation
Fraunhofer-Institut für Silicatforschung ISC

    Smart Glass Solutions – such as electrochromic (EC) and thermochromic (TC) windows and glass façades –control the radiation energy transfer with the "touch of a button" and thus can drastically reduce the energy demands for heating and air conditioning of large buildings. On 1st October 2019, the EU-funded initiative "Switch2save" was launched to improve the availability and affordability of EC and TC smart glass technologies. The consortium of ten partners from research and industry will demonstrate the energy saving potential of smart glass solutions in two fully-operational buildings.

    Climate change is a topic now on everyone's lips and climate targets are being discussed at all levels. Solutions such as the use of natural resources for energy generation and energy recovery in existing cycles are currently of high research interest. One building block for a sustainable future is the EU Energy Performance of Buildings Directive that targets a full zero-emission building stock all over Europe before 2050.

    Glazing in buildings accounts for up to 60 % of energy transfer through modern building envelopes. In winter, heat is emitted to the outside, while in summer, solar radiation heats the building interior, which increases the demand for air-conditioning and cooling. Large windows and glass façades – a common design element in modern and large buildings – worsen this effect.

    Today, mechanical window blinds and jalousies are used to control solar radiation dependent on the time of day, temperature and sunlight intensity. However, they strongly affect (or impair) comfort and light conditions inside the building. In glass façade buildings, such window blinds – if installed at all – disturb the architectural design and require heavy mounts and profiles.

    Smart and switchable glass solutions have the potential to replace mechanical window blinds in the future. However, they are currently optimized towards aesthetic requirements and not energy saving, are very expensive and hard to come by. The EU-funded initiative Switch2save aims to overcome these limitations by combining and maturing EC and TC systems to create lightweight Energy Smart Insulating Glass Units (IGUs) suitable for large windows and glass façades. EC switching relies on materials that change their light transmittance by applying a low electrical voltage; TC cells are based on materials that change their infrared reflection properties with increasing temperature.

    The Switch2save consortium includes leading universities, research institutes and industries from six EU countries. Within the next four years, the partners will collectively develop a combination of EC and TC cells – with optimized maximum energy saving potential – based on a switchable total energy transmittance (g-value). They will scale the manufacturing technologies for increased availability and cost effectiveness, assess the performance of the innovative IGUs, and demonstrate the heating and cooling energy saving potential and the lighting comfort in two operational buildings in Greece and Sweden.

    Project coordinator Dr. John Fahlteich, Fraunhofer FEP, explains the potential of the technology: "Experts estimated that energy demand for air-conditioning and cooling of buildings will more than double by 2050! Furthermore, large glass façade buildings (e.g. shopping centers, airports, office buildings) require as much as 35% more energy for heating and up to five times more energy for cooling than modern buildings with small windows. The Switch2save solution will be able to reduce the total annual heating and cooling energy demand of such large glass buildings by up to 44%. This will be achieved through smart switching protocols based on local, real-time weather and temperature data and the illumination conditions in the building".

    The Switch2save EC and TC modules are based on nanoscaled thin film stacks that are applied to plastic webs or ultra-thin glass films by using large area vacuum and atmospheric pressure deposition techniques. The modules have a specific weight of less than one kg per square meter – much less than even a single glass pane in a window. They are easily integrated into IGUs by a lamination step to allow window and glass façade manufacturing with well-established processes – a key requirement for acceptance of the novel technology by construction companies. The integration of wireless switching and standard interfaces directly into the building automation systems will satisfy the needs of building owners and provide maximum energy saving when in operation.

    Switch2save will demonstrate the potential in two representative buildings – Greece’s second largest hospital in Athens and an operational office building in Uppsala, Sweden. The Switch2save consortium will replace 50 windows and 200 m² glass façade area with the smart glass solution and will perform a full "before-after" comparison of the energy demand for a one-year cycle in both buildings. The findings will accelerate the widespread implementation of energy smart glass and significantly contribute to the goal of a CO2-neutral building stock in the EU before 2050.


    Controlling sunlight at the touch of a button

    Researchers at the Fraunhofer ISC have been working successfully for more than 15 years on so-called electrochromic materials and elements for technical applications. These novel materials change their color properties through electric current. Applied as thin layers on transparent, conductive substrates, they can intensify their color at the touch of a button or be completely decolorized.

    In the newly launched, European Union-funded project Switch2Save, Fraunhofer ISC is bringing its experience in the production of electrochromic layers on flexible substrates by means of roll-to-roll processes and supporting the research and industry partners in the scaling up of processes and technologies system development. "The advantage of our electrochromic technologies are novel materials that have high color contrast and short switching times. The R2R processability also offers great potential for a future cost reduction in the production of electrochromic elements", Dr. Marco Schott explains, Head of Electrochromic Systems at the Fraunhofer ISC.

    When it comes to characterizing the optical and electrochemical properties, the Fraunhofer ISC not only contributes valuable know-how in the Switch2Save project, but also an extensive technical infrastructure. "At the Fraunhofer R&D Center Electromobility Bavaria, which was set up under the umbrella of the Fraunhofer ISC, tests and analyzes for almost all electrochemical issues can be carried out, a benefit for the further development of electrochromic systems, too," continues Schott. The aim of the EU-funded project is the large-scale production of electrochromic and thermochromic switching laminates for use in façade elements and windows.

    More information about the Electrochromic Systems Group at Fraunhofer ISC: https://www.fzeb.fraunhofer.de/en/electrochromic-systems.html

    More information about the Switch2Save project, see
    https://cordis.europa.eu/project/rcn/224847/factsheet/de

    Save the Date
    During the conference "pro flex 2019 - Roll-to-roll coating of flexible materials", Dr. John Fahlteich, the Switch2save project coordinator, will be available with other scientists from Fraunhofer FEP to provide information about the project, vacuum-coating possibilities and plant technology. The conference, with focus on a "Technology Cross-Over", offers the possibility to get information about the numerous possibilities of roll-to-roll technologies for film and ultra-thin glass coating on site. "pro flex 2019 - Roll-to-roll coating of flexible materials" will take place from November 4 – 6, 2019. You find more information on the website of Fraunhofer FEP: https://www.fep.fraunhofer.de/de/events/pro-flex-2019.html


    Wissenschaftliche Ansprechpartner:

    Dr. John Fahlteich
    Project coordinator
    Group Manager: R2R Sputtering and PECVD
    Fraunhofer FEP
    E-mail: john.fahlteich@fep.fraunhofer.de

    Dr. Marco Schott
    Head of Electrochromic Systems at FZEB
    Fraunhofer-Institut für Silicatforschung ISC
    E-mail: marco.schott@isc.fraunhofer.de


    Bilder

    Roll-to-Roll production of electrochromic films under cleanroom conditions at Fraunhofer ISC
    Roll-to-Roll production of electrochromic films under cleanroom conditions at Fraunhofer ISC
    K. Selsam, Fraunhofer ISC
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Bauwesen / Architektur, Chemie, Elektrotechnik, Umwelt / Ökologie, Werkstoffwissenschaften
    überregional
    Forschungsprojekte
    Englisch


     

    Roll-to-Roll production of electrochromic films under cleanroom conditions at Fraunhofer ISC


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).