idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.02.2020 11:32

A step towards controlling spin-dependent petahertz electronics by material defects

Jenny Witt Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

    The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

    Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic motion. Unlike conventional techniques, light waves not only initiate the electronic motion but also control it on its natural timescale, i.e. the attosecond timescale (one attosecond is one quintillionth of a second). This has the potential to increase the operational speed of devices and computing by orders of magnitude and opens an avenue for petahertz electronics.

    High-frequency flashes of light are emitted when a solid is exposed to intense ultrashort light. This process is known as high harmonic generation (HHG). The electric field oscillations of the incident light trigger and control the motion of electrons in solids, which sets the current in solids. The induced current has two contributions: one from the transitions of electrons from valence bands to conduction bands and another due to the motion of electrons and holes in their respective energy bands.

    In the theoretical and experimental studies of the process of HHG in solids, it is commonly assumed that the solids are defect-free. However, this underlying assumption is not true in practice. In real solids, defects are inevitable due to their growth processes. They can be of different forms such as vacancies, interstitials, or impurities. At present, not much is known about how the presence of defects can modify the HHG process and associated electron dynamics. Keeping in mind that defect engineering has been the backbone of conventional optoelectronics, it is therefore crucial to understand the role of defects in the context of petahertz electronics and spintronics.

    In their recent theoretical work published in npj Computational Materials, a team of researchers from the Indian Institute of Technology (IIT) in Bombay, India, and the Max-Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg, Germany, have addressed an important missing piece of information towards the endeavour of petahertz electronics and spintronics: How do the different kinds of defects influence the motion of electrons in solids during HHG? To address this question, a two-dimensional monolayer of hexagonal boron nitride (h-BN) with a boron or a nitrogen atom vacancy is exposed to an intense light flash.

    h-BN starts behaving as a donor or an acceptor of electrons as soon as a nitrogen or a boron atom is removed. This results in qualitatively different electronic structures and the induced vacancy defects become spin-polarized. In particular, the research team found that the two spin channels are affected differently and that electrons with opposite spins contribute differently to high-harmonic emission. Moreover, the electron-electron interaction manifests itself disparately in defected-solids in comparison to the pristine one.

    The present work also anticipates the situation when either a nitrogen or a boron atom is replaced by a carbon atom (doping-defect) instead of removing the atom completely from h-BN. When a single boron atom is replaced by a single carbon atom, the electron dynamics resemble those where a nitrogen atom is removed completely from h-BN. Contrarily, the opposite situation arises when a nitrogen atom is replaced by a carbon atom: Here, the dynamics resemble those where a boron atom is completely detached from the system.

    This work is a significant step towards achieving better control of light wave-driven petahertz spintronics using defect engineering in solids.


    Wissenschaftliche Ansprechpartner:

    Prof. Gopal Dixit, lead author: gdixit@phy.iitb.ac.in
    Dr. Nicolas Tancogne-Déjean, co-author: nicolas.tancogne-dejean@mpsd.mpg.de


    Originalpublikation:

    https://www.nature.com/articles/s41524-020-0275-z


    Weitere Informationen:

    http://www.mpsd.mpg.de


    Bilder

    High-harmonic generation from a spin-polarized defect in hexagonal boron nitride
    High-harmonic generation from a spin-polarized defect in hexagonal boron nitride
    M.S. Mrudul, Indian Institute of Technology, Bombay
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Elektrotechnik, Energie, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    High-harmonic generation from a spin-polarized defect in hexagonal boron nitride


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).