idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.01.2007 10:00

Durchbruch bei Zinkoxid-Szintillatoren

Dr. Bärbel Adams Presse- und Öffentlichkeitsarbeit
Universität Leipzig

    Die weltweit hellsten und schnellsten Szintillatoren aus ZnO haben Halbleiter-Forscher um Prof. Marius Grundmann von der Universität Leipzig zusammen mit El-Mul Technologies in Yavne, Israel, entwickelt. Mit den neuen Zinkoxid-Szintillatoren kann eine ganz neue Generation von Raster-Elektronenmikroskopen hergestellt werden.

    Sie reagieren auf das Eintreffen schneller Elektronen mit der Aussendung von Licht. Dieses wird dann weiterverarbeitet und gibt über seine Intensität eine Information über die Zahl der auftreffenden Elektronen. Die Arbeiten erfolgen im Rahmen des Profilbildenden Forschungsbereich 1 der Universität Leipzig "Von Molekülen und Nanoobjekten zu multifunktionalen Materialien und Prozessen".

    Da es sich bei ZnO um einen Halbleiter handelt, der eine sogenannte direkte Bandstruktur besitzt, wird das Licht sehr schnell, inner-halb weniger als einer Milliardstel Sekunde nach Eintreffen des Elektrons ausgesendet und erlaubt auf diese Weise eine schnelle Antwort. "Dies ist wichtig für eine Generation von Raster-Elektronen-Mikroskopen, die mit wesentlich schnelleren Rastergeschwindigkeiten arbeiten und so höhere Anforde-rungen an die Zeitauflösung des Elektronendetektors und damit an den Szintillators stellen.", erklärt Prof. Dr. Marius Grundmann, Direktor des Instituts für Experimentelle Physik II und Leiter der Abteilung Halblei-terphysik.

    Hohe Lichtintensität von Zinkoxid

    Zinkoxid haben die Forscher wegen seiner guten Quantenausbeute und damit Lichtintensität als Materialsystem gewählt. In einer der Leipziger Oxid-Epitaxieanlagen wurde das Zinkoxid mit dem ultravioletten Licht eines gepulsten Hochleistungslasers verdampft und als dünner Film mit einer Dicke von etwa 1 Mikrometer, etwa der hundertstel Dicke eines Haares, auf Saphir (Aluminiumoxid) in einem Vakuumverfahren abgeschieden. "Die Bedingungen während des Wachstums wurden so optimiert, dass die Schichten eine möglichst große Lichtausbeute haben." sagt Dr. Michael Lorenz, der die Oxid-Epitaxie leitet. Die Wissenschaftler haben damit zu kämpfen, dass Zinkoxid zwar Licht sehr effizient aussendet, aber dieses auch genauso so effizient wieder absorbiert. Von außen ist praktisch nur Licht zu sehen, was aus einer 0.1 Mikrometer dünnen "Haut" der Schicht emittiert wurde. Hierzu wurde unter anderem auch die für die Lichtauskopplung wichtige Oberflächenrauhigkeit gezielt eingestellt.

    Erstmals Modellierung des Lichteffektes von Zinkoxid

    Es gelang den Wissenschaftlern im Rahmen der Diplomarbeit von Robert Johne die spekt-ralen Eigenschaften des emittierten Lichtes und den beschriebenen Reabsorptionseffekt, sowie seine Abhängigkeit von Schicht- und Anregungsparametern erstmalig genau und in hervorragender Übereinstimmung mit dem Experiment zu modellieren. Die Ausbeute und Zeitantwort des Szintillators wurden in Israel von El-Mul Technologies systematisch untersucht. Chegnui Bekeny, Doktorand an der Universität Bremen, der zuvor in der Abteilung Halbleiterphysik in Leipzig im "International Physics Studies Program" seinen Master (M.Sc.) abgeschlossen hatte, hat weitere, detaillierte zeitaufgelöste, spekt-roskopische Untersuchungen durchgeführt.

    100 bis 100 mal bessere Homogenität

    Die hergestellten Zinkoxid-Schichten sind zudem über eine große Fläche (es wurde aus Kompatibilität mit dem Design der Detekto-ren von El-Mul ein Wafer mit 32,7 mm Durchmesser verwendet) sehr homogen, d.h. die Lichtausbeute variiert nur sehr wenig mit dem Auftreffpunkt des Elektrons. Hierzu bilden die Leipziger Forscher diesen Prozess in einem Elektronenmikroskop mit Hilfe der Kathodolumineszenz direkt ab. Die Homoge-nität ist einen Faktor 100-1000 besser als bei herkömmlichen Szintillatoren, die auf Pul-verbasis hergestellt werden, was für das ge-ringe Rauschen des Detektors essentiell ist.

    Gemeinsames Patent in Aussicht

    Einige der neuartigen Szintillatoren befinden sich zur Zeit im Kundentest. Der Leiter der Arbeitsgruppe Halbleiterphysik und Direktor des Instituts für Experimentelle Physik II, Prof. Dr. Marius Grundmann, meint hierzu "Wir konnten die Eigenschaften unserer Szintillatoren in kurzer Zeit wesentlich verbessern und haben einen Durchbruch geschafft. Mit weiteren Kniffen erscheint eine weitere Verbesserung um einen Faktor zwei bis drei, möglicherweise mehr, realistisch." Ein mit dem Prozess in Verbindung stehendes gemeinsames Patent der Leipziger Forscher mit der israelischen Firma befindet sich in der Prüfungsphase. "Leider konnten wir bisher keine Drittmittel für diese Forschungen einwerben, da die Kombination einer deutschen Universität und einer israelischen Firma bei den Förderinstitutionen wie BMBF, DFG und auch auf israelischer Seite nicht unterstützt wird", beklagt sich Prof. Grundmann.

    Die wissenschaftlichen Ergebnisse wurden kürlich in der renommierten Zeitschrift Applied Physics Letters erscheinen.

    weitere Informationen:

    Prof. Dr. Marius Grundmann
    Telefon: 0341 97-32650
    E-Mail: grundmann@physik.uni-leipzig.de
    www.uni-leipzig.de/~hlp


    Bilder

    Leuchten eines ZnO Szintillators (10mm x 10mm Plättchen) bei Beschuss mit Elektronen.
    Leuchten eines ZnO Szintillators (10mm x 10mm Plättchen) bei Beschuss mit Elektronen.

    None


    Merkmale dieser Pressemitteilung:
    Mathematik, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).