idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Medienpartner:
Wissenschaftsjahr


Teilen: 
01.09.2011 20:00

Profiler auf Zellebene

Claudia Naegeli Hochschulkommunikation
Eidgenössische Technische Hochschule Zürich (ETH Zürich)

    Forschern der ETH Zürich und des Massachusetts Institute of Technology (MIT) ist es gelungen, ein biologisches Computernetzwerk in menschliche Zellen einzubauen. Das Netzwerk erkennt Krebszellen anhand einer logischen Rechenoperation mit fünf krebsspezifischen Faktoren und führt zu deren Zerstörung.

    Wissenschaftler arbeiten schon seit geraumer Zeit an biologischen Computern, die in lebenden Zellen arbeiten. Sie sollen beispielsweise verschiedene Moleküle im Innern einer menschlichen Körperzelle erkennen, die wichtige Informationen über den Gesundheitszustand der Zelle preisgeben und eine entsprechende Behandlung einleiten. Nun sind Yaakov (Kobi) Benenson, Professor für Synthetische Biologie der ETH Zürich und MIT-Professor Ron Weiss mit einem Team von Wissenschaftlern diesem Ziel einen grossen Schritt näher gekommen.

    In einer Publikation, die soeben in «Science» erschienen ist, stellen sie einen Schaltkreis aus verschiedenen Genen vor, der zwischen Krebszellen und gesunden Zellen unterscheiden und richtig – sprich mit Zelltod der entarteten Zellen – reagieren kann. Dieses Netzwerk erkennt im Inneren der Zelle fünf Krebs-spezifische molekulare Faktoren sowie deren Konzentration. Weil der Schaltkreis nur funktioniert, wenn alle Faktoren in der Zelle vorhanden sind, muss die Identifizierung der Zelle sehr spezifisch erfolgen.

    Krebszellen selektiv in den Tod schicken

    Die Forscher testeten das Gen-Netzwerk in verschiedenen Kulturen menschlicher Zellen: Krebszellen aus dem Gebärmutterhals, den sogenannten HeLa-Zellen, und gesunden Zellen. Diese Experimente waren erfolgreich. Nachdem die Forscher den genetischen Biorechner der Zellkultur eingeschleust hatten, starben die HeLa-Zellen ab. Die gesunden Zellen hingegen blieben vom Zelltod verschont.

    Für diesen Erfolg war viel Vorarbeit nötig. Benenson und sein Team mussten erst herausfinden, welche Kombination von Molekülen einzigartig für die HeLa-Zellen sind. Als Signalmoleküle dienten verschiedene Arten von Mikro-RNS (miRNA). Die Forschenden mussten erst ein miRNS-Profil identifizieren, das für eine HeLa-Zelle typisch ist. Doch im Körper gibt es rund 250 verschiedene Zelltypen und unzählige Varianten von Krebszellen, wovon hunderte im Labor gezüchtet werden können. Noch grösser ist die Vielfalt von miRNS: 500 bis 1000 verschiedene Arten sind aus menschlichen Zellen bekannt. «Jeder Zelltyp, unabhängig davon ob gesund oder krank, hat verschiedene miRNS-Moleküle, die an- oder abgeschaltet sind», sagt Benenson.

    Fünf Faktoren für Krebsprofil

    Ein miRNS-Profil zu erstellen, ist einer Krankheitsdiagnose ähnlich: «Ein Merkmal allein, wie beispielsweise Fieber, kann eine Krankheit nicht zuverlässig bestimmen. Je mehr Faktoren ein Arzt kennt, desto zuverlässiger wird seine Diagnose», erklärt der Professor, der vor eineinhalb Jahren von Harvard an die ETH Zürich gekommen ist. Sein Team hat deshalb nach mehreren Faktoren gesucht, die Krebszellen zuverlässig von gesunden Körperzellen unterscheiden. In ihrem Versuch mit den HeLa-Zellen konnten die Wissenschaftler schliesslich fünf miRNSs identifizieren, die in einer bestimmten Konzentrationen vorliegen mussten, damit das Gen-Netzwerk die Zelle präzise und zuverlässig als Krebszelle identifizieren kann.

    Operationen wie in einem Rechner

    Jeder Faktor muss mit einem ‚AND‘- oder einem AND NOT-Befehl mit dem nächsten logisch verknüpft sein, damit am Schluss das richtige Resultat erzielt werden kann. Dass der Zellcomputer gleich fünf verschiedene Faktoren miteinander verknüpfte und daraus die richtige Diagnose stellen konnte, sind für Benenson ein grosser Erfolg und ein wichtiger Schritt.

    In einem nächsten Schritt will er diese Zellcomputer in einem geeigneten Tiermodell testen. Zukünftige Anwendungen könnten bei Diagnose und Therapie liegen. Allerdings gibt es noch ein paar schwierige Probleme zu lösen, wie etwa die fremden Gene in einer Zelle effizient und sicher zu halten. Die Gene in die Zellen zu bringen, ist ebenfalls nicht einfach. Für seinen Ansatz braucht der ETH-Professor nur eine temporäre Genzugabe, wozu die Methoden, viral oder chemisch, noch nicht völlig ausgreift sind. «Von einer voll funktionalen Behandlungsmethode für Menschen sind wir noch immer sehr weit entfernt. Diese Arbeit aber ist ein erster, wichtiger Schritt, der die Machbarkeit solch selektiver Diagnosemethode aufzeigt», sagt Benenson.

    Original: Zhen Xie, Liliana Wroblewska, Laura Prochazka, Ron Weiss and Yaakov Benenson. Multi-input RNAi-based logic circuit for identification of specific cancer cells. To appear in Science issue of Sept 2, 2011


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).