idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.12.2011 11:28

Müllerzellen als Lichtleiter im menschlichen Auge

Dr. Manuela Rutsatz Pressestelle
Universität Leipzig

    Leipziger Wissenschaftlern sind Aufsehen erregende Erkenntnisse zur Funktionsweise des menschlichen Auges gelungen. Sie konnten nachweisen, dass so genannte Müllerzellen, die Bestandteil des Nervengewebes in der Netzhaut sind, als Lichtleiter fungieren. Bei einer punktförmigen Belichtung der Netzhaut-Oberfläche gelangt das Licht durch die Müllerzellen punktgenau und ungehindert zu den Lichtsinneszellen auf der Rückwand der Netzhaut.

    Auf diese Weise können Wirbeltiere und damit auch der Mensch nachts selbst sehr schwaches Licht und am Tag kontrastreiche Bilder ihrer Umwelt wahrnehmen. Ihre Erkenntnisse haben die Forscher in der aktuellen Ausgabe des Biophysical Journal (Agte et al., Müller Glial Cell-Provided Cellular Light Guidance through the Vital Guinea-Pig Retina, Biophysical Journal (2011)) veröffentlicht.

    Ausgangspunkt der Untersuchungen war die Frage, wie das beeindruckende Sehvermögen der meisten Wirbeltiere erklärt werden kann, obwohl das Licht auf seinem Weg durch die Netzhaut mehrere Gewebsschichten durchdringen muss und dabei reflektiert und gestreut wird, bevor es auf die Lichtsinneszellen trifft. Seit zwölf Jahren beschäftigt sich ein Team aus Biologen und Biophysikern mit der Rolle der Müllerzellen beim Licht-"Transport" durch die Netzhaut.

    Die Forschungsergebnisse der Leipziger Biologen und Biophysiker sind deshalb von so entscheidender Bedeutung, weil zuvor der Weg des Lichts durch die Netzhaut nicht untersucht worden ist. Es wurde einfach vorausgesetzt, dass das Licht seinen Weg durch die Netzhaut findet, "weil diese ja durchsichtig ist". Die neuen Ergebnisse zeigen nun, wie die Natur das Problem der Lichtstreuung gelöst hat.

    Bei den Müllerzellen handelt es sich um so genannte Gliazellen, wie sie auch im Gehirn vorkommen. Sie sind wie Neuronen Bestandteile des Nervengewebes und fungieren für die Neuronen als "Helfer", indem sie sie beispielsweise ernähren und so ihr Überleben sichern. Die Müllerzellen sind schlauchförmig und ziehen von einer Oberfläche zur anderen durch die ganze Dicke der Netzhaut des Auges, der Retina. "Unsere ursprüngliche Idee war, dass die Müllerzellen genau die richtigen Maße und die richtige Anordnung haben könnten, um als Lichtleiter das Licht von der Netzhautoberfläche bis zur Rückseite und damit zu den Fotorezeptorzellen zu bringen", sagt Professor Andreas Reichenbach.

    Um eine solche Fragestellung zu bearbeiten, brauche es Ideen und Methoden aus Biologie und Physik. Die Plattform für diese fächerübergreifende Zusammenarbeit ist das Leipziger Graduiertenkolleg INTERNEURO, in dem Forscher unterschiedlicher Fachrichtungen gemeinsam neurowissenschaftliche Themen erforschen. So auch in diesem
    Projekt: Die optischen Eigenschaften der Retina wurden in enger Zusammenarbeit der Arbeitsgruppen von Prof.
    Reichenbach (Pathophysiologie der Neuroglia am
    Paul-Flechsig-Institut) und von Professor Josef Alfons Käs (Physik der weichen Materie) untersucht.

    Bereits 2007 haben die Forscher um Professor Reichenbach erste Erkenntnisse im Wissenschaftsjournal PNAS (Prooceedings of the National Academy of Sciences of the United States of America) veröffentlicht und dafür auch eine Auszeichnung, den Cozzarelli-Preis, erhalten.
    "Allerdings gab es damals auch Kritik", sagt der Professor.
    Der Hauptvorwurf: Die Wissenschaftler hätten nur untersucht, dass einzelne isolierte Müllerzellen als Lichtleiter funktionieren, dies wurde jedoch nicht in der lebenden Netzhaut gezeigt.

    Deshalb haben die Leipziger Wissenschaftler, in Zusammenarbeit mit der Göttinger Arbeitsgruppe für Neurophysiologie und Zelluläre Biophysik um Professor Detlev Schild, nun an lebendem Gewebe geforscht. Silke Agte, Mitglied des Graduiertenkollegs INTERNEURO, untersuchte die Netzhaut von Meerschweinchen, die der des Menschen ähnlich ist. "Sie hat Ähnlichkeit mit der peripheren Netzhaut des Menschen. Das sind die Bereiche am Rande des Gesichtsfeldes, die man noch wahrnimmt, aber nicht zum bewussten Sehen - wie beispielsweise zum Lesen - nutzt", erklärt die Naturwissenschaftlerin.

    Die Wissenschaftler haben nicht nur nachweisen können, dass die Müllerzellen in der lebenden Netzhaut als Lichtleiter fungieren. "Wir konnten auch zeigen, dass die Anzahl von Zapfen und Müllerzellen in verschiedenen Bereichen der Retina identisch ist", sagt Agte. Diese Erkenntnis lege die Vermutung nahe, dass jede Müllerzelle als "privater Lichtleiter" das Licht direkt zu einem ihr zugeordneten Zapfen leitet und dass infolgedessen jeder Zapfen seinen individuellen Anteil des Bildes der Umwelt erhält. Die Zapfen gehören wie die Stäbchen zu den Fotorezeptorzellen im Auge. Während die Zapfen für das scharfe Sehen und das Farbensehen zuständig sind, sorgen die lichtempfindlichen Stäbchen dafür, dass das Auge auch bei starker Dunkelheit noch etwas erkennt.

    Aufbauend auf den neuen Erkenntnissen sollen die Forschungen am Auge verschiedener Wirbeltiere fortgesetzt werden. "Eine spannende Frage ist zum Beispiel, wie sich die langen, dünnen und seitlich verschobenen Müllerzellen an der Stelle des schärfsten Sehens verhalten", sagt Professor Reichenbach. Ein Vergleich mit den Netzhäuten nachtaktiver Tiere wie beispielsweise Ratten, deren Müllerzellen dünner und länger als beim Menschen und beim Meerschweinchen sind, sei ebenfalls angedacht. Auch aus physikalischer Sicht bieten sich neue Forschungsansätze. So soll herausgefunden werden, ob es spezielle Müllerzellen für die verschiedenen Farbbereiche im Lichtspektrum gibt, also ob beispielsweise Müllerzellen mit einem zugeordneten rotempfindlichen Zapfen bevorzugt rotes Licht transportieren. Möglicherweise verfügen die Müllerzellen auch über einen Sonnenbrilleneffekt; demnach könnte es sein, dass Licht besonders hoher Intensität nur abgeschwächt geleitet wird. Dieser Mechanismus könnte dem Schutz der empfindlichen Lichtsinneszellen dienen.


    Weitere Informationen:
    Prof. Dr. Andreas Reichenbach
    Paul-Flechsig-Institut für Hirnforschung
    Telefon: +49 341 97-25730
    E-Mail: reia@medizin.uni-leipzig.de
    www.uni-leipzig.de/~pfi

    Silke Agte
    Paul-Flechsig-Institut für Hirnforschung
    E-Mail: Silke.Agte@medizin.uni-leipzig.de


    Bilder

    Biophysical Journal.
    Biophysical Journal.

    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).