idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.04.2012 12:16

Was wir von Mäusehirnen lernen können

lic. phil. Christoph Dieffenbacher Kommunikation & Marketing
Universität Basel

    Unser Gehirn besitzt zwar neuronale Stammzellen, aber kaum Möglichkeiten Neuronen zu ersetzen, die durch Krankheit, Verletzung oder das Altern verloren gegangen sind. Im Gegensatz dazu verfügen Nager über die Fähigkeit, ein ganzes Leben lang Neuronen zu bilden und Teile des Gehirns zu regenerieren. Die Gruppe von Prof. Verdon Taylor von der Universität Basel hat nun herausgefunden, dass die neuronalen Stammzellen im Mäusehirn ruhen und reaktiviert werden können. Dabei spielt die Signalgebung über den Notch1-Rezeptor eine wichtige Rolle. Die Forschungsergebnisse sind im «Journal of Neuroscience» veröffentlicht und sollen Perspektiven für eine künftige regenerative Gehirntherapie eröffnen.

    Seit langem wurde angenommen, dass für die verminderte Regeneration des Gehirns beim Menschen der Mangel an Stamm- und Vorläuferzellen verantwortlich ist. Heute weiss man, dass die Gehirne erwachsener Säugetiere – einschliesslich des Menschen – Stammzellen enthalten, die das Potential zur Bildung neuer Neuronen besitzen. Warum es dem menschlichen Gehirn dennoch nicht gelingt, neue Nervenzellen zu bilden, bleibt ein Rätsel. Die zentrale Frage ist gegenwärtig, wie Stammzellen des Gehirns während des gesamten Lebens erhalten bleiben und wie ihre Aktivitäts- und Ruhezustände reguliert werden.

    Eine Hypothese besagt, dass im Erwachsenenalter neuronale Stammzellen irreversibel im Ruhezustand bleiben. Interessanterweise können ausgewachsene Nager ihre ruhenden Zellen jedoch reaktiveren, um neue Neuronen zu bilden. Ein grundlegendes Verständnis davon, wie Aktivität bei neuronalen Stammzellen geregelt ist und worin sich aktive und ruhende neuronale Stammzellen unterscheiden, könnte also erklären, warum sich das menschliche Gehirn nicht selbst reparieren kann.

    Notch1 bestimmt neuronales Schicksal
    In einem soeben veröffentlichten Artikel zeigt die Gruppe von Prof. Verdon Taylor vom Departement Biomedizin der Universität Basel, dass der Signalweg über den Notch1-Rezeptor eine wesentliche Rolle bei der Bildung von Neuronen im Gehirn von ausgewachsenen Mäusen spielt. Die Notch1-Signalgebung belässt die neuronalen Stammzellen in ihrem aktiven Zustand. Wird der Rezeptor gezielt ausgeschaltet, verbleiben die neuronalen Stammzellen in ihrem Ruhezustand. Offenbar sind bei aktiven und inaktiven neuronalen Stammzellen unterschiedliche Mechanismen schicksalsbestimmend.

    Die Forschenden konnten zeigen, dass ruhende Stammzellen im Gehirn der Maus über ein Jahr bestehen bleiben und dass sie durch eine regenerations- und alterungsbedingte Notch1-Signalgebung wieder aktiviert werden können. Somit ist dieser Signalweg für neuronale Stammzellen sowohl für die laufende Neurogenese als auch für das regenerierende und alternde Mäusehirn entscheidend. Ob unser Gehirn diese Notch1-Signalgebung verloren hat, bleibt zu klären. Jedenfalls scheint der in der Maus beobachtet Mechanismus beim Menschen so nicht vorhanden zu sein. Zweifellos stellen der Mechanismus und die molekularen Unterschiede zwischen aktiven und ruhenden Stammzellen wichtige Ansatzpunkte für eine künftige regenerative Gehirntherapie dar.

    Originalbeitrag
    Onur Basak, Claudio Giachino, Emma Fiorini, H. Robson MacDonald, and Verdon Taylor
    Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent but only in their active state
    The Journal of Neuroscience, April 18, 2012 | 32(16):5654 –5666 | doi: 10.1523/JNEUROSCI.0455-12.2012

    Weitere Auskünfte
    Prof. Dr. Verdon Taylor, Universität Basel, Departement Biomedizin, Embryologie und Stammzellbiologie, Tel. +41 061 695 30 91, E-Mail: verdon.taylor@unibas.ch


    Bilder

    Notch1-abhängige neuronale Stammzellen bilden mehrere Untertypen von neuen Neuronen (grün) im erwachsenen Gehirn der Maus.
    Notch1-abhängige neuronale Stammzellen bilden mehrere Untertypen von neuen Neuronen (grün) im erwach ...

    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).