idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Medienpartner:
Wissenschaftsjahr


Teilen: 
13.12.2012 18:10

Ende eines Dogmas: Bipolarzellen in der Netzhaut feuern Aktionspotenziale

Dr. Simone Cardoso de Oliveira Bernstein Koordinationsstelle
Nationales Bernstein Netzwerk Computational Neuroscience

    Die Netzhaut muss Bilder „digitalisieren“, um sie verlässlich über den Sehnerv ins Gehirn weiterzuleiten. Bisher nahm man an, dass dieser Schritt in den Ganglienzellen erfolgt, den Ausgabezellen der Netzhaut. Forscher um Thomas Euler an der Universität Tübingen, dem Werner Reichardt Centre for Integrative Neuroscience und dem Bernstein Zentrum Tübingen konnten jetzt nachweisen, dass bereits Bipolarzellen digitale Signale verschicken können. Sie fanden in mindestens drei Typen von Bipolarzellen in der Mäusenetzhaut deutliche Hinweise auf schnelle und stereotype Aktionspotenziale. Diese Ergebnisse weisen darauf hin, dass die Netzhaut noch keineswegs so gut verstanden ist wie bisher gedacht.

    Die Netzhaut (Retina) in unseren Augen ist nicht nur eine Schicht von Lichtsinneszellen, die ähnlich einem Kamerachip Lichtmuster 1:1 ins Gehirn weiterschickt. Sie führt bereits hochkomplexe Verarbeitungsschritte durch, bei denen verschiedene Eigenschaften der Lichtreize herausfiltert werden: ob sich die Lichtintensität an einer Stelle gerade erhöht oder verringert hat, in welche Richtung sich ein Lichtpunkt bewegt oder auch wo eine Kante im Bild verläuft. Um diese Information verlässlich über den Sehnerv – eine Art Kabel – ins Gehirn zu übertragen, muss sie in eine Folge von stereotypen Aktionspotenzialen umgewandelt, also „digitalisiert“ werden. Nach der klassischen Lehrmeinung verwenden erst die Ganglienzellen, die die Information von der Netzhaut zum Gehirn weiterleiten, einen digitalen Code, ähnlich dem im Computer. Fast alle anderen Zellen, so nahm man an, arbeiten mit abgestuften, also analogen Signalen. Doch Tübinger Forscher konnten nun zeigen, dass bei Säugetieren bereits die Bipolarzellen, welche im retinalen Netzwerk direkt auf die Photorezeptoren folgen, in einem digitalen Modus arbeiten können.

    Mit einer neuen experimentellen Technik gelang es dem Wissenschaftler Tom Baden und seinen Kollegen, Signale in den synaptischen Terminalen der Bipolarzellen in der Mäuseretina zu messen. Die Wissenschaftler konnten die Zellen basierend auf ihren Antworten auf einfache Lichtreize acht verschiedenen Typen zuordnen. Diese Typen entsprachen im Wesentlichen jenen, die man auf Grund physiologischer und anatomischer Studien erwartet hatte. Überraschenderweise sahen die Antwortsignale in den schnellsten Zelltypen aber anders aus als erwartet: Sie waren schnell, stereotyp, und tauchten entweder in voller Höhe oder gar nicht auf, waren also nicht abgestuft. All dies sind typische Eigenschaften von Aktionspotenzialen. Früher hatte man solche „digitalen“ Signale zwar bereits vereinzelt in Bipolarzellen beobachtet, aber für Sonderfälle gehalten. Studien aus den letzten beiden Jahren hatten die klassische Überzeugung, dass Bipolarzellen keine Aktionspotenziale erzeugen, bereits durch die Untersuchung von Bipolarzellen in Fischen ins Wanken gebracht. Die neuen Daten aus Tübingen zeigen jetzt, dass digitale Signale systematisch in bestimmten Bipolarzellen von Säugetieren generiert werden. Aktionspotenziale ermöglichen eine schnellere und zeitlich präzisere Signalübertragung als abgestufte Signale und bieten damit in bestimmten Situationen Vorteile. Damit bringen die Ergebnisse aus Tübingen ein sicher geglaubtes Dogma in der Hirnforschung endgültig zu Fall – und eröffnen eine Vielzahl neuer Fragen.

    Das Bernstein Zentrum Tübingen ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 150 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

    Text:
    Simone Cardoso de Oliveira, Philipp Behrens

    Weitere Informationen erteilen Ihnen gerne:

    Dr. Tom Baden
    Universität Tübingen
    Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) / Forschungsinstitut für Augenheilkunde
    Otfried-Mueller-Strasse 25
    72076 Tuebingen
    Tel.: +49 (0)7071 29 84749
    thomas.baden@uni-tuebingen.de

    Prof. Thomas Euler
    Universität Tübingen
    Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) / Forschungsinstitut für Augenheilkunde
    Otfried-Mueller-Strasse 25
    72076 Tuebingen
    Tel.: +49 (0)7071 29 85028
    thomas.euler@cin.uni-tuebingen.de

    Originalpublikation:
    Baden T., Berens P., Bethge M., Euler T. (2012): „Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina“. Current Biology: Dec 13, 2012.
    http://dx.doi.org/10.1016/j.cub.2012.11.006


    Weitere Informationen:

    http://www.eulerlab.de Webseite des Euler Labors
    http://www.bccn-tuebingen.de Bernstein Zentrum Tübingen
    http://www.cin.uni-tuebingen.de Werner Reichardt Centre for Integrative Neuroscience
    http://www.uni-tuebingen.de Universität Tübingen
    http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Biologie, Informationstechnik, Mathematik, Medizin, Psychologie
    überregional
    Forschungsergebnisse
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).