idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.06.2017 20:00

Newton auf den Kopf gestellt

Dr. Christian Flatz Büro für Öffentlichkeitarbeit und Kulturservice
Universität Innsbruck

    In der Quantenwelt bewegen sich Objekte nicht immer so, wie wir es im Alltag gewohnt sind. Innsbrucker Experimentalphysiker um Hanns-Christoph Nägerl haben gemeinsam mit Theoretikern in München, Paris und Cambridge ein Quantenteilchen beobachtet, das sich in einer Oszillationsbewegung durch ein eindimensionales Gas bewegt. Sie berichten darüber in der Fachzeitschrift Science.

    Ein vom Baum fallender Apfel soll Isaac Newton zu jener Theorie inspiriert haben, die die Bewegung eines Objekts beschreibt. Die Newtonschen Gesetze besagen, dass ein sich bewegendes Objekt sich gerade weiterbewegt bis eine äußere Kraft die Bahn verändert. Die Bedeutung dieser Bewegungsgesetze ist allgegenwärtig und reicht vom Fallschirmspringer im Schwerefeld der Erde über das Gefühl der Trägheit in einem beschleunigenden Flugzeug bis zu den Umlaufbahnen der Planeten um die Sonne.
    In der Quantenwelt hingegen stößt dieses Alltagsverständnis von Bewegung an Grenzen und scheitert manchmal überhaupt. „Oder können Sie sich eine Glasmurmel vorstellen, die sich durch eine Flüssigkeit auf und ab bewegt anstatt einfach runter zu fallen“, fragt Hanns-Christoph Nägerl vom Institut für Experimentalphysik der Universität Innsbruck. Sein Team hat gemeinsam mit Theoretikern in München, Paris und Cambridge ein Quantenteilchen entdeckt, das genau dieses Verhalten zeigt. Grundlage der überraschenden Beobachtung ist die sogenannte Quanteninterferenz, jene Gesetzmäßigkeit der Quantenmechanik, wonach Teilchen sich wie Wellen verhalten, die sich aufsummieren oder auslöschen können.

    Nahe am absoluten Nullpunkt

    Um das Teilchen oszillieren zu sehen, haben die Forscher ein Gas aus Cäsiumatomen fast bis auf den absoluten Nullpunkt gekühlt und in sehr dünne Röhrchen gesperrt, die mit Laserstrahlen erzeugt wurden. Durch einen speziellen Trick wurden die Atome dazu gebracht, stark miteinander zu wechselwirken. Unter diesen extremen Bedingungen bilden die Teilchen eine Art Quantenflüssigkeit, deren Bewegung nur entlang der Röhrchen möglich ist. Die Physiker beschleunigten dann ein weiteres Atom in einem anderen Spinzustand durch das Gas. Dabei beobachteten sie, wie die Quantenwelle dieses Atoms von den anderen Atomen gestreut und wieder zurückreflektiert wurde. Dies erzeugte die verblüffende Oszillationsbewegung, die im Gegensatz zu dem steht, was eine Murmel macht, wenn sie ins Wasser fällt. Das Experiment zeigt, dass Newtons Gesetze in der Quantenwelt nicht uneingeschränkt gelten.

    Kristallines Verhalten von Quantenflüssigkeiten

    Die Tatsache, dass Quantenwellen in bestimmte Richtungen reflektiert werden können, ist nicht neu. So ist zum Beispiel bekannt, dass Elektronen im Kristallgitter eines Festkörpers reflektiert werden, was als Bragg-Streuung bezeichnet wird. Im Innsbrucker Experiment war allerdings kein Kristall vorhanden. Es war vielmehr das atomare Gas selbst, das eine Art versteckte Ordnung darstellte, was Physiker als Korrelationen bezeichnen. Die nun in der Fachzeitschrift Science veröffentlichte Arbeit zeigt, wie diese Korrelationen in Verbindung mit der Wellen-Natur von Materie die Bewegung von Teilchen in der Quantenwelt bestimmen und zu neuen Phänomenen führen, die auf den ersten Blick unserer Intuition widersprechen.

    Die Eigentümlichkeit der Quantenmechanik zu verstehen, kann auch für breitere Anwendungen interessant sein und zum Beispiel dabei helfen, grundlegende Mechanismen in elektronischen Bauteilen oder sogar Transportprozesse in komplexen biologischen Systemen besser zu verstehen.

    Diese Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und dem europäischen Wissenschaftsrat ERC und dem TUM Institute for Advanced Study finanziell unterstützt.

    Publikation: Bloch oscillations in the absence of a lattice. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nägerl. Science 2017. DOI: 10.1126/science.aah6616

    Rückfragehinweis:
    Hanns-Christoph Nägerl
    Institut für Experimentalphysik
    Universität Innsbruck
    Tel: +43 512 507-52420
    E-mail: christoph.naegerl@uibk.ac.at
    Web: www.ultracold.at

    Dr. Christian Flatz
    Büro für Öffentlichkeitsarbeit
    Universität Innsbruck
    Telefon: +43 512 507 32022
    Mobil: +43 676 872532022
    E-Mail: christian.flatz@uibk.ac.at


    Weitere Informationen:

    http://dx.doi.org/10.1126/science.aah6616 - Bloch oscillations in the absence of a lattice. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nägerl. Science 2017
    http://www.ultracold.at/ - Arbeitsgruppe Ultrakalte Atome und Quantengase, Universität Innsbruck
    http://www.uibk.ac.at/exphys/ - Institut für Experimentalphysik - Universität Innsbruck


    Bilder

    Physiker beobachteten die überraschende Oszillationsbewegung eines Quantenteilchens durch ein eindimensionales Gas.
    Physiker beobachteten die überraschende Oszillationsbewegung eines Quantenteilchens durch ein eindim ...
    Florian Meinert
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).