idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.08.2017 13:57

Computer berechnen Umgestaltung von Mikroorganismen zu Zellfabriken

Gabriele Ebel M.A. Presse- und Öffentlichkeitsarbeit / Public Relations
Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

    Wissenschaftler am Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg haben mit Hilfe neu entwickelter Computeralgorithmen fünf biotechnologische Produktionsorganismen wie Escherichia coli und Bäckerhefe daraufhin analysiert, wie sich das Wachstum der Zellen optimal mit der Überproduktion von (Bio-)Chemikalien koppeln lässt. In ihren Berechnungen zeigten sie, dass für fast jedes Stoffwechselprodukt in den untersuchten Organismen geeignete genetische Interventionen existieren, mit denen eine Kopplung der Synthese des Produkts mit Zellwachstum möglich ist. Die Ergebnisse der Studie tragen grundlegend zur Entwicklung von neuen biotechnologischen Prozessen bei.

    Mikroorganismen können ein breites Spektrum an Chemikalien und Biokraftstoffen synthetisieren und werden in einer stärker biobasierten Industrie weiter an Bedeutung gewinnen. Oftmals produzieren die Zellen die gewünschten Substanzen aber nicht von allein oder nicht effizient genug und müssen daher durch geeignete genetische Eingriffe im Stoffwechsel zu Hochleistungsproduzenten umfunktioniert werden.

    Der Stoffwechsel (Metabolismus) selbst eines recht einfachen Mikroorganismus ist hochgradig komplex und umfasst in der Regel Hunderte oder gar Tausende Metabolite (wie Zucker oder organische Säuren) und biochemische Reaktionen. Um im Labyrinth der sich daraus ergebenden Stoffwechselnetzwerke nicht den Überblick zu verlieren, verwenden Wissenschaftler neben Laborexperimenten verstärkt mathematische Modelle und Computersimulationen. Diese helfen unter anderem bei der Suche nach Kombinationen von genetischen Eingriffen, die eine normale Zelle in eine biochemische Fabrik zur Synthese eines gewünschten Produktes umwandeln.

    Im Idealfall lässt sich dabei das Wachstum der Zelle obligatorisch mit der Synthese des Produkts koppeln. Die Zelle kann sich dann nämlich nur noch vermehren, wenn die gewünschte Chemikalie als Nebenprodukt entsteht. Eine solche Kopplung läuft zum Beispiel in natürlicher Art und Weise ab, wenn Hefen unter Sauerstoffausschluss das Gärprodukt Alkohol produzieren (müssen). Da Mikroorganismen gewöhnlich immer nach maximalem Wachstum streben, vereinen die Ingenieure dadurch geschickt ihre Interessen mit denen des Lebewesens. Für bestimmte Produkte wurde in konkreten Beispielen gezeigt, dass eine solche Kopplung erzwungen werden kann. Bisher war aber unklar, inwieweit sich dieses Prinzip auf ein breites Spektrum von anderen Produktklassen und für verschiedene Mikroorganismen verallgemeinern und anwenden lässt.

    Wachstumsgekoppelte Überproduktion ist fast universell möglich

    Dieser Frage sind nun Wissenschaftler der Arbeitsgruppe „Analyse und Redesign biologischer Netzwerke“ am Max-Planck-Institut in Magdeburg unter der Leitung von Dr. Steffen Klamt auf den Grund gegangen. Die Forscher untersuchten für fünf der wichtigsten biotechnologischen Produktionsorganismen (einschließlich der häufig verwendeten Arbeitspferde Escherichia coli und Bäckerhefe, aber auch andere wie zum Beispiel photosynthetische Bakterien), für welche Metabolite eine mit Wachstum gekoppelte Synthese möglich ist. Für diese aufwändigen Berechnungen entwickelten sie zunächst effiziente Algorithmen. Als zentrales und zugleich überraschendes Ergebnis zeigten sie damit schließlich, dass sich für fast jeden Metaboliten (>94%) in den fünf Modellorganismen eine Interventionsstrategie finden lässt, die Wachstum an eine Überproduktion des Metaboliten mit einer guten Ausbeute erzwingt. Die fünf Organismen decken ein breites Spektrum von relevanten Produkten für die chemische Industrie ab (wie zum Beispiel Biokraftstoffe, Biopolymere, Nahrungsergänzungsmittel oder Plattformchemikalien zur Synthese anderer Substanzen). Somit sind diese Ergebnisse, die in der Zeitschrift Nature Communications veröffentlicht wurden, von weitreichender Bedeutung für die Entwicklung neuer biotechnologischer Prozesse.

    Unter Anwendung der oben beschriebene Kopplungsstrategie hatte die Gruppe jüngst in einer Parallelstudie einen Stamm des Bakteriums Escherichia coli mittels computergestützter Berechnungen erfolgreich so verändert, dass dieser Itaconsäure, eine wichtige Plattformchemikalie, mit bisher unerreichter Ausbeute aus Traubenzucker produziert. Dieses konkrete Anwendungsbeispiel hat das Potenzial der Kopplungsstrategie nochmals nachhaltig demonstriert.

    Für weitere Forschungen zur computergestützten Optimierung des Stoffwechsels von Mikroorganismen wird die Gruppe um Steffen Klamt in den nächsten fünf Jahren mit zwei Millionen Euro durch den Europäischen Forschungsrat (European Research Council, ERC) gefördert.

    Originalveröffentlichungen
    1.Axel von Kamp and Steffen Klamt, "Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms.," Nature Communications 8, 15926 (2017). DOI: 10.1038/ncomms15956

    2. Björn-Johannes Harder, Katja Bettenbrock, and Steffen Klamt, "Model-Based metabolic engineering enables high yield itaconic acid production by Escherichia coli," Metabolic Engineering 38, 29-37 (2016). DOI: 10.1016/j.ymben.2016.05.008


    Weitere Informationen:

    http://www.mpi-magdeburg.mpg.de/3287956/2017-08-01-mikroorganismen-zellwachstum-...


    Bilder

    Dr. Oliver Hädicke untersucht ein bakterielles Stoffwechselnetz mit der Software CellNetAnalyzer, entwickelt von Wissenschaftlern des Max-Planck-Instituts für Dynamik komplexer technischer Systeme.
    Dr. Oliver Hädicke untersucht ein bakterielles Stoffwechselnetz mit der Software CellNetAnalyzer, en ...
    Max-Planck-Institut Magdeburg
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Informationstechnik, Mathematik, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).