idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.10.2017 10:47

Forscher der Universität Hamburg entdecken Mechanismus zur Verdopplung von Pflanzengenomen

Birgit Kruse Referat Medien- und Öffentlichkeitsarbeit
Universität Hamburg

    Pflanzenbiologie: Eine Störung der Zellteilung löst bei der Ackerschmalwand (Arabidopsis thaliana) eine Genomverdoppelung aus, Polyploidisierung genannt. Entwicklungsbiologen der Universität Hamburg haben den Vorgang erstmals detailliert analysiert und im Fachmagazin „Developmental Cell“ beschrieben. Polyploidisierungen könnten Pflanzen die Anpassung etwa an den Klimawandel erleichtern. Die genaue Kenntnis der zugrundeliegenden Prozesse birgt außerdem große Potenziale für die Züchtung von Nutzpflanzen. Dazu untersucht ein Hamburger Forschungsverbund die Genomverdopplungen im Rahmen der Hybridbildung, also der Kreuzung zweier Arten.

    Genomverdoppelungen, die zweifache Weitergabe des Erbguts beider Eltern von einer Generation zur nächsten, sind bei Pflanzen weit verbreitet und spielen wahrscheinlich bei deren Evolution eine wichtige Rolle. Zum Beispiel können sich dadurch schnell neue Eigenschaften entwickeln. „Die Doppelungen bringen verschiedene Vorteile, die auch die Anpassung an veränderte Umweltbedingungen erleichtern oder neue Arten entstehen lassen können. Die Pflanzenzucht nutzt die Genomverdoppelung, etwa um robustere oder ertragreichere Pflanzen zu erzeugen“, erklärt Prof. Dr. Arp Schnittger, Entwicklungsbiologe an der Universität Hamburg und Sprecher des Hamburger Forschungsverbunds „Hybride – Chancen und Herausforderungen von neuen genomischen Kombinationen“.

    In der aktuellen Ausgabe des Fachmagazins „Developmental Cell“ beschreibt Prof. Schnittger zusammen mit seinem wissenschaftlichen Mitarbeiter Dr. Shinichiro Komaki den Auslöser für eine Genomverdoppelung in der Wurzel der Ackerschmalwand (Arabidopsis thaliana), eine der am besten erforschten Modellpflanzen für diese Untersuchungen: Wird die Zellteilungsmaschinerie gestört, versuchen die Pflanzen in der Mitose-Phase der Zellkernteilung nur etwa zwei Stunden lang, den Zellteilungsprozess erneut in Gang zu setzen. Danach verdoppeln sie ihre Chromosomen. Bei Tieren kann die Wartephase mehr als 20 Stunden dauern, und die meisten Zellen sterben dabei ab. „Der schnelle und aktive Ausstieg aus der Zellteilung hat uns sehr erstaunt“, sagt Prof. Schnittger. „Möglicherweise hat er sich als großer Gewinn in der Evolution der Pflanzen erwiesen.“

    Im Forschungsverbund „Hybride – Chancen und Herausforderungen von neuen genomischen Kombinationen“, der von Hamburger Behörde für Wissenschaft, Forschung und Gleichstellung (BWfG) gefördert wird, untersuchen Wissenschaftlerinnen und Wissenschaftler der Universität Hamburg, des Bernhard-Nocht-Institut für Tropenmedizin (BNI) und des Climate Service Center Germany (GERICS), ob Genomänderungen insbesondere bei der Hybridbildung – der Kreuzung zweier Arten – bestimmten Gesetzmäßigkeiten folgen. Mit diesem Wissen lässt sich beurteilen, ob hieraus Vorteile für die natürliche Anpassung etwa an den Klimawandel und mögliche Potenziale für die biotechnologische Nutzung erwachsen können. Neben Arabidopsis stehen dabei auch Pappel- und Schlickgras- sowie Schnecken-, Fisch- und Lemuren-Arten im Fokus der Forscherinnen und Forscher.

    „Die Organismen sind so ausgewählt, dass wir zentrale Fragen der Hybridforschung an je einer Pflanzen- und einer Tierart untersuchen können“, erklärt Prof. Schnittger. „Ausgehend von der Hybridverbreitung und einer Untersuchung der genomischen Bedingungen für wichtige biologische Funktionen sollen die Grundlagen für die Leistungsfähigkeit von Hybriden und schließlich die Genome selbst analysiert werden.“

    Seine eigenen Untersuchungen zur Ackerschmalwand möchte Prof. Schnittger nun auf die Meiose ausweiten – eine Reduktionsteilung, die wichtig für die Bildung von Geschlechtszellen ist. „Genomveränderungen in der Meiose betreffen alle Zellen in der nachkommenden Generation. Zudem scheint es so zu sein, dass verschiedene Kontrollmechanismen, die außerhalb der Meiose wirken, bei Pflanzen außer Kraft gesetzt sind. Damit kommt der Meiose eine besonders wichtige Rolle bei der Genom-Evolution zu.“

    Link zum Original-Artikel:

    Komaki, Shinichiro and Schnittger, Arp (2017): The spindle assembly checkpoint in Arabidopsis is rapidly shut off during severe stress. Developmental Cell 44, DOI: 10.1016/j.devcel.2017.09.017.

    http://www.cell.com/developmental-cell/fulltext/S1534-5807(17)30770-0

    Für Rückfragen:

    Prof. Dr. Arp Schnittger
    Universität Hamburg
    Fachbereich Biologie
    Biozentrum Klein Flottbek
    Tel.: +49 40 42816-502
    E-Mail: arp.schnittger@uni-hamburg.de


    Bilder

    Prof. Dr. Arnd Schnittger vor einem Kulturschrank mit Exemplaren der Ackerschmalwand (Arabidopsis thaliana).
    Prof. Dr. Arnd Schnittger vor einem Kulturschrank mit Exemplaren der Ackerschmalwand (Arabidopsis th ...
    UHH/Nicolai
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).