idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.01.2018 10:50

„Making of“ von biorelevanten Nanomaterialien

Dr. Karin J. Schmitz Abteilung Öffentlichkeitsarbeit
Gesellschaft Deutscher Chemiker e.V.

    Polymerisation und elektrostatische Selbstorganisation als kombinierte Strategie, um niederdimensionale Polyion-Komplex-Nanomaterialien verschiedener Morphologien herzustellen

    Die Wechselwirkungen von geladenen biologischen Makromolekülen wie Nucleinsäuren, Proteinen und Polysaccharid-Protein-Konjugaten lassen sich durch künstliche Polyelektrolyte nachahmen. Solche synthetischen polyionischen Komplexe könnten Wirkstoffe, Proteine oder Nucleinsäuren stabilisieren und als Trägermaterial zu ihrem Ziel bringen. Chinesische Wissenschaftler beschreiben nun in der Zeitschrift Angewandte Chemie eine vielseitig einsetzbare, kommerziell anwendbare Strategie zur Herstellung von Polyion-Komplexaggregaten mit variierbarer Gestalt. Damit ließen sich Bibliotheken solcher niederdimensionalen, biologisch relevanten Nanostrukturen herstellen.

    DNA, Proteine und die viele Polysaccharid-Konjugate sind natürliche, geladene Makromoleküle. Ihre komplexen Strukturen und besonderen Funktionen sind Voraussetzung für das zelluläre Leben. Synthetische polyionische Aggregate können die Eigenschaften von biologischen Makromoleküle nachahmen. Daher wären sie eine ideale Plattform für die Interaktion mit biologischen Strukturen. Mit ihrer variablen Form und einem speziell zugeschnittenen Ladungszustand könnten sie als aktive Trägermaterialien für Nucleinsäuren in der Gentherapie oder für den zielgerichteten Wirkstofftransport dienen. Allerdings ist die Entwicklung von solchen maßgeschneiderten synthetischen Polyion-Komplexen (PICs) nicht trivial, denn Tausende von thermodynamischen und kinetischen Faktoren beeinflussen ihre Endmorphologie und den tatsächlich eingenommenen Ladungszustand. Häufig sind Form, Reaktivität und Stabilität nicht reproduzierbar zu erreichen. Yuanli Cai und seine Kollegen an der Soochow-Universität in Suzhou (China) arbeiten daher intensiv an rational entwickelten Synthesen. Mit der Methode der „Polymerisations-induzierten elektrostatischen Selbstorganisation“ oder PIESA stellen sie nun eine kostengünstige skalierbare Synthese für niederdimensionale PICs mit variabler Morphologie vor, das für biomedizinische Zwecke verwendet werden könnte.

    Für ihr Protokoll erweiterten die Autoren die Methode der „Polymerisations-induzierten Selbstorganisation“ (PISA), einer Synthesestrategie für Blockkopolymere in wässrigem Medium, indem sie ein positiv geladene Monomer in der Gegenwart eines synthetischen Polyions von entgegengesetzter Ladung und eines weiteren Makromoleküls als ungeladenen Copolymerblocks unter Einstrahlung von sichtbarem Licht polymerisierten. Das endgültige Nanomaterial bestand aus einem durch die elektrische Anziehungskraft definierten Aggregat des geladenen Polymers und der Kopolymerere. Es hatte bemerkenswerte Eigenschaften.

    Je nach Festkörperkonzentration beobachteten die Autoren strukturelle Übergänge der synthetisierten PICs von der Vesikelform über kompartimentierte Vesikel bis hin zu flexiblen ultradünnen Filmen von 10 Nanometern Dicke. Je nach Lösungsmittel entstanden entweder porenreiche Filme oder sehr lange Nanodrähte, die die Probe gelieren ließen. Nach Aussage der Autoren ergibt das PIESA-Verfahren eine „hohe Reproduzierbarkeit in einem kommerziell machbaren Maßstab unter ökologisch und ökonomisch ansprechenden Bedingungen bei 25 °C“. Anders gesagt könnten komplexe Nanomaterialien mit maßgeschneiderter Morphologie und einstellbarem Ladungszustand reproduzierbar hergestellt werden. Anwendungen in der Biomedizin als Trägermaterial für DNA und andere geladene biologische Moleküle, um diese bis zum Ort ihrer Verwendung zu transportieren, kommen in Frage. Ebenso könnte eine Bibliothek von niederdimensionalen Nanomaterialien mit maßgeschneiderter Morphologie aufgebaut werden.

    Angewandte Chemie: Presseinfo 52/2017

    Autor: Yuanli Cai, Soochow University (China), mailto:ylcai@suda.edu.cn

    Link zum Originalbeitrag: https://doi.org/10.1002/ange.201710811

    Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.


    Weitere Informationen:

    http://presse.angewandte.de


    Bilder

    Bibliotheken biologisch relevanter Nanostrukturen rücken in greifbare Nähe
    Bibliotheken biologisch relevanter Nanostrukturen rücken in greifbare Nähe
    (c) Wiley-VCH
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Biologie, Chemie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).