idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.01.2019 13:14

5000 mal schneller als ein Computer

Dipl.-Geogr. Anja Wirsing Pressestelle des Forschungsverbundes Berlin e.V.
Forschungsverbund Berlin e.V.

    Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom

    Wenn Licht in einem Halbleiterkristall ohne Inversionssymmetrie absorbiert wird, können elektrische Ströme erzeugt werden. Wissenschaftler am Max-Born-Institut haben jetzt gerichtete Ströme bei Terahertzfrequenzen (THz) erzeugt, die bei weitem die Taktraten moderner Höchstfrequenzelektronik schlagen. Die Forscher zeigen, dass eine elektronische Ladungsübertragung zwischen benachbarten Atomen im Kristallgitter den zugrunde liegenden physikalischen Mechanismus darstellt.

    Solarzellen konvertieren die Energie von Licht in einen gerichteten elektrischen Strom, welcher dann die Energieversorgung von elektrischen Verbrauchern gewährleistet. Physikalische Schlüsselprozesse sind hierbei die Ladungstrennung während der Lichtabsorption und der anschließende Transport von elektrischer Ladung zu den Kontakten der Solarzelle. Die elektrischen Ströme werden von negativen (Elektronen) und positiven Ladungsträgern (Löchern) getragen, die sogenannte Intrabandbewegungen in den verschiedenen elektronischen Bändern des Halbleiters ausführen. Aus physikalischer Sicht sind folgende Fragen wesentlich: Welches ist die kleinste Einheit in einem Kristall, die solch einen lichtinduzierten gerichteten Strom erzeugen kann? Was sind die höchstmöglichen Frequenzen für solche elektrischen Ströme? Welche Mechanismen auf der atomaren Längenskala sind für solch einen Ladungstransport verantwortlich?

    Die kleinste Einheit in einem Kristall ist die sogenannte Einheitszelle, eine wohldefinierte Anordnung von Atomen, die durch die chemischen Bindungen bestimmt wird. Die Einheitszelle des prototypischen Halbleiters GaAs wird in Abb. 1(a) gezeigt und stellt ein Kristallgitter aus Gallium- und Arsen-Atomen ohne Inversionszentrum dar. Der elektronische Grundzustand des Kristalls ist durch ein vollständig gefülltes Valenzband gekennzeichnet, dessen elektronische Ladungsdichte auf der Bindung zwischen Ga- und As-Atomen konzentriert ist (Abb. 1(b)). Bei Absorption von infrarotem oder sichtbarem Licht wird ein Elektron aus dem Valenzband in das energetisch nächstgelegene Leitungsband gehoben. In diesem neuen Zustand ist die elektronische Ladung in Richtung des Ga-Atoms verschoben (Abb. 1(c)). Dieser Ladungstransfer entspricht einem lokalen elektrischen Strom, welcher Interbandstrom oder auch Verschiebestrom (engl. shift current) genannt wird und sich fundamental von Elektronenbewegungen innerhalb der Bänder unterscheidet. Bis vor kurzem gab es eine kontroverse Debatte unter Theoretikern, ob der experimentell beobachtete, lichtinduzierte Strom auf Intrabandbewegungen (wie in der Solarzelle) oder Interbandbewegungen fußt.

    Wissenschaftler am Max-Born-Institut in Berlin untersuchten experimentell die lichtinduzierten elektrischen Ströme im Halbleiter Galliumarsenid (GaAs) zum ersten Mal auf ultraschnellen Zeitskalen bis hinab zu 50 Femtosekunden (1 fs = 10 hoch -15 Sekunden). Sie berichten über ihre Ergebnisse in der Fachzeitschrift Physical Review Letters 121, 266602 (2018). Mit Hilfe von ultrakurzen, intensiven Lichtimpulsen vom infraroten (λ = 900 nm) bis in den sichtbaren Spektralbereich (λ = 650 nm, oranges Licht) erzeugten sie Verschiebeströme in GaAs, die sehr schnell oszillieren und damit THz-Strahlung mit einer Bandbreite bis zu 20 THz erzeugen (Abb. 2). Die Eigenschaften dieser Ströme und die zugrunde liegenden Elektronenbewegungen konnten im Detail über abgestrahlte THz-Wellen bestimmt werden, deren Amplitude und Phase direkt experimentell gemessen wurden. Die THz-Strahlung zeigt ultrakurze Stromstöße des gleichgerichteten Lichtes bei Frequenzen, die 5000 mal höher sind als die Taktraten moderner Computersysteme.

    Die experimentell beobachteten Eigenschaften der Verschiebeströme sind nicht mit dem physikalischen Bild von Intrabandbewegungen von Elektronen oder Löchern vereinbar. Ganz im Gegenteil, Modellrechnungen basierend auf Intrabandbewegungen von Elektronen in einer Pseudopotential-Bandstruktur reproduzieren die experimentellen Ergebnisse und zeigen, dass ein interatomarer Übertrag von elektronischer Ladung in der Größenordnung einer chemischen Bindungslänge den Schlüsselmechanismus darstellt. Dieser Prozess findet in jeder Einheitszelle des Kristalls statt, d.h. auf einer Subnanometer Längenskala, und erlaubt die Gleichrichtung von Licht. Dieser Effekt kann auch bei noch höheren Frequenzen ausgenutzt werden und eröffnet neue interessante Anwendungen in der Höchstfrequenzelektronik.

    Bildunterschriften:

    Abb.1 : Abb. 1: (a) Einheitszelle des Halbleiters Galliumarsenid (GaAs). Chemische Bindungen (blau) binden jedes Galliumatom an vier benachbarte Arsenatome (und umgekehrt). Valenzelektronendichte auf der grauen Ebene in (a) im (b) Grundzustand (Elektronen im Valenzband) und im (c) angeregten Zustand (Elektronen im Leitungsband). Zusätzlich zu den hier gezeigten Valenzelektronen gibt es noch stark gebundene Elektronen nahe der Atomkerne.

    Abb. 2: Oben wird das Prinzip der Messungen erklärt. Ein kurzer Puls im nahen Infrarot oder im Sichtbaren wird auf eine dünne GaAs-Schicht gesandt. Das elektrische Feld der hierdurch erzeugten THz-Strahlung wird als Funktion der Zeit (1 ps = 10 hoch -12 s) gemessen. Unten wird ein Beispiel für eine solche Messung gezeigt. Sie enthält Oszillationen mit einer Periode von 0.08 ps, was einer Frequenz von 12000 GHz=12 THz entspricht.


    Wissenschaftliche Ansprechpartner:

    Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
    Dr. Michael Wörner, woerner@mbi-berlin.de, Tel.: 030 6392 1470
    Dr. Ahmed Ghalgaoui, ghalgaou@mbi-berlin.de, Tel.: 030 6392 1474
    Prof. Dr. Klaus Reimann, reimann@mbi-berlin.de, Tel.: 030 6392 1476
    Prof. Dr. Thomas Elsässer, elsasser@mbi-berlin.de, Tel.: 030 6392 1400


    Originalpublikation:

    A. Ghalgaoui, K. Reimann, M. Woerner, T. Elsaesser, C. Flytzanis, K.Biermann
    „Resonant second-order nonlinear terahertz response of gallium arsenide”
    Phys. Rev. Lett. 121, 266602 (2018)
    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.266602


    Weitere Informationen:

    https://www.mbi-berlin.de/de/current/index.html#2018_12_27


    Bilder

    Einheitszelle des Halbleiters Galliumarsenid (GaAs)
    Einheitszelle des Halbleiters Galliumarsenid (GaAs)
    MBI Berlin
    None

    Messungen / Verschiebeströme in GaAs, die sehr schnell oszillieren und damit THz-Strahlung mit einer Bandbreite bis zu 20 THz erzeugen
    Messungen / Verschiebeströme in GaAs, die sehr schnell oszillieren und damit THz-Strahlung mit einer ...
    MBI Berlin
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Elektrotechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).